Borghouts C, Werner A, Elthon T, Osiewacz H D
Botanisches Institut, Johann Wolfgang Goethe-Universität, D-60439 Frankfurt am Main, Germany.
Mol Cell Biol. 2001 Jan;21(2):390-9. doi: 10.1128/MCB.21.2.390-399.2001.
We have previously shown that the control of cellular copper homeostasis by the copper-modulated transcription factor GRISEA has an important impact on the phenotype and lifespan of Podospora anserina. Here we demonstrate that copper depletion leads to the induction of an alternative respiratory pathway and to an increase in lifespan. This response compensates mitochondrial dysfunctions via the expression of PaAox, a nuclear gene coding for an alternative oxidase. It resembles the retrograde response in Saccharomyces cerevisiae. In P. anserina, this pathway appears to be induced by specific impairments of the copper-dependent cytochrome c oxidase. It is not induced as the result of a general decline of mitochondrial functions during senescence. We cloned and characterized PaAox. Transcript levels are decreased when cellular copper, superoxide, and hydrogen peroxide levels are raised. Copper also controls transcript levels of PaSod2, the gene encoding the mitochondrial manganese superoxide dismutase (PaSOD2). PaSod2 is a target of transcription factor GRISEA. During the senescence of wild-type strain s, the activity of PaSOD2 decreases, whereas the activity of the cytoplasmic copper/zinc superoxide dismutase (PaSOD1) increases. Collectively, the data explain the postponed senescence of mutant grisea as a defined consequence of copper depletion, ultimately leading to a reduction of oxidative stress. Moreover, they suggest that during senescence of the wild-type strain, copper is released from mitochondria. The involved mechanism is unknown. However, it is striking that the permeability of mitochondrial membranes in animal systems changes during apoptosis and that mitochondrial proteins with an important impact on this type of cellular death are released.
我们之前已经表明,铜调节转录因子GRISEA对细胞铜稳态的控制对嗜热栖热放线菌的表型和寿命有重要影响。在此我们证明,铜耗竭会导致诱导替代呼吸途径并延长寿命。这种反应通过编码替代氧化酶的核基因PaAox的表达来补偿线粒体功能障碍。它类似于酿酒酵母中的逆行反应。在嗜热栖热放线菌中,这条途径似乎是由铜依赖性细胞色素c氧化酶的特定损伤诱导的。它不是衰老过程中线粒体功能普遍下降的结果。我们克隆并鉴定了PaAox。当细胞铜、超氧化物和过氧化氢水平升高时,转录水平会降低。铜还控制编码线粒体锰超氧化物歧化酶(PaSOD2)的基因PaSod2的转录水平。PaSod2是转录因子GRISEA的一个靶点。在野生型菌株s的衰老过程中,PaSOD2的活性降低,而细胞质铜/锌超氧化物歧化酶(PaSOD1)的活性增加。总体而言,这些数据解释了突变体grisea衰老延迟是铜耗竭的明确结果,最终导致氧化应激的降低。此外,它们表明在野生型菌株衰老过程中,铜从线粒体中释放出来。涉及的机制尚不清楚。然而,引人注目的是,动物系统中线粒体膜的通透性在细胞凋亡过程中会发生变化,并且对这种细胞死亡类型有重要影响的线粒体蛋白会被释放。