Anton L
Institute for Theoretical Physics, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa and and Institute of Atomic Physics, INFLPR, Lab 22, P.O. Box MG-36 R76900, Bucharest, Romania.
Phys Rev Lett. 2001 Jan 1;86(1):67-70. doi: 10.1103/PhysRevLett.86.67.
The time and size distributions of the waves of topplings in the Abelian sandpile model are expressed as the first arrival at the origin distribution for a scale invariant, time-inhomogeneous Fokker-Plank equation. Assuming a linear conjecture for the time inhomogeneity exponent as a function of a loop-erased random walk (LERW) critical exponent, suggested by numerical results, this approach allows one to estimate the lower critical dimension of the model and the exact value of the critical exponent for LERW in three dimensions. The avalanche size distribution in two dimensions is found to be the difference between two closed power laws.
阿贝尔沙堆模型中倾倒波的时间和大小分布,被表示为一个尺度不变、时间非齐次的福克 - 普朗克方程在原点分布的首次到达情况。根据数值结果所建议的,假设时间非齐次指数与环擦除随机游走(LERW)临界指数的函数关系为线性猜想,这种方法能够估计该模型的下临界维度以及三维空间中LERW临界指数的精确值。二维空间中的雪崩大小分布被发现是两个封闭幂律之间的差值。