Suppr超能文献

使用自组织映射来评估肌电信号。

The use of self organizing maps to evaluate myoelectric signals.

作者信息

Patterson P E, Anderson M

机构信息

College of Engineering, Iowa State University, Ames, IA 50011, USA.

出版信息

Biomed Sci Instrum. 1999;35:147-52.

Abstract

This paper presents a study of the use and accuracy of self-organizing maps (SOM) in classifying myoelectric signal properties. Myoelectric signals were obtained and classified for four upper-limb movements (elbow flexion, elbow extension, wrist pronation and wrist supination) and their force category. This was done for isolated actions as well as for multiple action sequences. The success of the developed SOM ranged from 92%-97% when determining the motion, from 81%-87% in determining the force category, and from 59%-96% in determining sequences of motions. These successes are encouraging for the continued development of this technique for use in controlling real-time complex motions in prosthetic devices.

摘要

本文介绍了一项关于自组织映射(SOM)在肌电信号特性分类中的应用及准确性的研究。获取了肌电信号,并针对四种上肢运动(肘部屈曲、肘部伸展、手腕旋前和手腕旋后)及其力量类别进行了分类。这一过程针对单独动作以及多个动作序列进行。所开发的自组织映射在确定运动时成功率为92% - 97%,在确定力量类别时成功率为81% - 87%,在确定运动序列时成功率为59% - 96%。这些成功结果为该技术在假肢装置实时复杂运动控制中的持续发展提供了鼓舞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验