Wang R, Huang C, Li B, Jin D, Zhang J
Tsinghua University.
Zhongguo Yi Liao Qi Xie Za Zhi. 1998 Mar;22(2):63-6.
This paper presents a surface electromyography (EMG) motion pattern classifier which combines Neural Network (NN) with parametric model such as autoregressive (AR) model. This motion pattern classifier can successfully identify four types of movement of human hand, wrist flexion, wrist extension, forearm pronation and forearm supination, by using of the surface EMG detected from the flexor carpi radialis and the extensor carpi ulnaris. The result shows that it has a great potential application to the control of bionic man-machine systems such as prostheses because of its fast calculating speed, high recognition ability, and good robust.
本文提出了一种将神经网络(NN)与自回归(AR)模型等参数模型相结合的表面肌电图(EMG)运动模式分类器。该运动模式分类器通过使用从桡侧腕屈肌和尺侧腕伸肌检测到的表面肌电图,能够成功识别手部的四种运动类型,即腕部屈曲、腕部伸展、前臂旋前和前臂旋后。结果表明,由于其计算速度快、识别能力强和鲁棒性好,在假肢等仿生人机系统的控制方面具有很大的潜在应用价值。