Suppr超能文献

基于BP神经网络的表面肌电图模式分类研究

[Study on the surface EMG pattern classification with BP neural networks].

作者信息

Wang R, Huang C, Li B, Jin D, Zhang J

机构信息

Tsinghua University.

出版信息

Zhongguo Yi Liao Qi Xie Za Zhi. 1998 Mar;22(2):63-6.

Abstract

This paper presents a surface electromyography (EMG) motion pattern classifier which combines Neural Network (NN) with parametric model such as autoregressive (AR) model. This motion pattern classifier can successfully identify four types of movement of human hand, wrist flexion, wrist extension, forearm pronation and forearm supination, by using of the surface EMG detected from the flexor carpi radialis and the extensor carpi ulnaris. The result shows that it has a great potential application to the control of bionic man-machine systems such as prostheses because of its fast calculating speed, high recognition ability, and good robust.

摘要

本文提出了一种将神经网络(NN)与自回归(AR)模型等参数模型相结合的表面肌电图(EMG)运动模式分类器。该运动模式分类器通过使用从桡侧腕屈肌和尺侧腕伸肌检测到的表面肌电图,能够成功识别手部的四种运动类型,即腕部屈曲、腕部伸展、前臂旋前和前臂旋后。结果表明,由于其计算速度快、识别能力强和鲁棒性好,在假肢等仿生人机系统的控制方面具有很大的潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验