Authier F, Danielsen G M, Kouach M, Briand G, Chauvet G
Institut National de la Santé et de la Recherche Médicale U510 (F.A.), Faculté de Pharmacie Paris XI, 92296 Châtenay-Malabry, France.
Endocrinology. 2001 Jan;142(1):276-89. doi: 10.1210/endo.142.1.7916.
The endosomal compartment of hepatic parenchymal cells contains an acidic endopeptidase, endosomal acidic insulinase (EAI), which hydrolyzes internalized insulin at a limited number of sites. Although the positions of these cleavages are partially known, the residues of insulin important in its binding to and proteolysis by EAI have not been defined. To this end, we have studied the degradation over time of native human insulin and three insulin-analog peptides using a soluble endosomal extract from rat liver parenchyma followed by purification of the products by HPLC and determination of their structure by mass spectrometry. We found variable rates of ligand processing, i.e. high ([Asp(B10)]- and [Glu(A13),Glu(B10)]-insulin), moderate (insulin) and low (the H2-analog). On the basis of IC(50) values, competition studies revealed that human and mutant insulins display nearly equivalent affinity for the EAI. Proteolysis of human and mutant insulins by EAI resulted in eight cleavages in the B-chain which occurred in the central region (Glu(B13)-Leu(B17)) and at the C-terminus (Arg(B22)-Thr(B27)), the latter region comprising the initial cleavages at Phe(B24)-Phe(B25) (major pathway) and Phe(B25)-Tyr(B26) (minor pathway) bonds. Except for the [Glu(A13),Glu(B10)]-insulin mutant, only one cleavage on the A-chain was observed at residues Gln(A15)-Leu(A16). Analysis of the nine cleavage sites showed a preference for hydrophobic and aromatic amino acid residues on both the carboxyl and amino sides of a cleaved peptide bond. Using the B-chain alone as a substrate resulted in a 30-fold increase in affinity for EAI and a 6-fold increase in the rate of hydrolysis compared with native insulin. A similar role for the C-terminal region of the B-chain of insulin in the high-affinity recognition of EAI was supported by the use of the corresponding B(22)-B(30) peptide, which displayed an increase in EAI affinity similar to the entire B-chain vs. wild-type insulin. Thus, we have identified a highly specific molecular interaction of insulin with EAI at the aromatic locus Phe(B24)-Phe(B25)-Tyr(B26). Analytical subfractionation of a postmitochondrial supernatant fraction showed that a pulse of internalized [(125)I]Tyr(A14)-H2-analog, a protease-resistant insulin analog, undergoes a greater lysosomal transfer and lesser degradation than [(125)I]Tyr(A14)-insulin, confirming that endosomal sorting is regulated directly or indirectly by endosomal proteolysis.
肝实质细胞的内体区室含有一种酸性内肽酶,即内体酸性胰岛素酶(EAI),它在有限数量的位点水解内化的胰岛素。尽管这些裂解位点的位置已部分明确,但胰岛素中对其与EAI结合及被EAI蛋白水解起重要作用的残基尚未确定。为此,我们使用大鼠肝实质的可溶性内体提取物研究了天然人胰岛素和三种胰岛素类似肽随时间的降解情况,随后通过高效液相色谱法纯化产物,并通过质谱法测定其结构。我们发现配体加工速率各不相同,即高([Asp(B10)] - 和[Glu(A13),Glu(B10)] - 胰岛素)、中(胰岛素)和低(H2类似物)。基于IC(50)值,竞争研究表明人和突变胰岛素对EAI显示出几乎相等的亲和力。EAI对人和突变胰岛素的蛋白水解导致B链上有八个裂解位点,这些位点位于中央区域(Glu(B13) - Leu(B17))和C末端(Arg(B22) - Thr(B27)),后者区域包括Phe(B24) - Phe(B25)(主要途径)和Phe(B25) - Tyr(B26)(次要途径)键处的初始裂解。除了[Glu(A13),Glu(B10)] - 胰岛素突变体外,在A链上仅在Gln(A15) - Leu(A16)残基处观察到一个裂解位点。对九个裂解位点的分析表明,在裂解肽键的羧基侧和氨基侧都偏好疏水和芳香族氨基酸残基。与天然胰岛素相比,单独使用B链作为底物时,对EAI的亲和力增加了30倍,水解速率增加了6倍。使用相应的B(22) - B(30)肽也支持了胰岛素B链C末端区域在EAI高亲和力识别中的类似作用,该肽与野生型胰岛素相比,显示出与整个B链类似的EAI亲和力增加。因此,我们确定了胰岛素与EAI在芳香族位点Phe(B24) - Phe(B25) - Tyr(B26)处存在高度特异性的分子相互作用。线粒体外上清液部分的分析亚分级显示,内化的[(125)I]Tyr(A14) - H2类似物(一种抗蛋白酶的胰岛素类似物)脉冲比[(125)I]Tyr(A14) - 胰岛素经历更大程度的溶酶体转移和更少的降解,这证实内体分选直接或间接受内体蛋白水解的调节。