Molema G, van Veen-Hof I, van Loenen-Weemaes A M, Proost J H, de Leij L F, Meijer D K
University Center for Pharmacy, Department of Pharmacokinetics and Drug Delivery, Groningen University Institute for Drug Exploration, The Netherlands.
Int J Cancer. 2001 Jan 1;91(1):1-7. doi: 10.1002/1097-0215(20010101)91:1<1::aid-ijc1001>3.0.co;2-5.
In the current study, we determined short-term pharmacokinetics and whole body distribution of elastase derived angiostatin [angiostatin(k1-3)] in rats after i.v. injection of radiolabelled protein. Since in gamma-camera studies, no tumor specific angiostatin(k1-3) accumulation was observed, general pharmacokinetics were studied in tumor free rats. By one-compartment model fitting of the data, Km 7.3 +/- 1.7 microg x ml(-1), Vmax 0.94 +/- 0.19 microg x min(-1), V, 10.9 +/- 2.5 ml and intrinsic clearance (Vmax/Km) 0.128 ml x min(-1) were calculated. Of the injected dose (I.D.) of angiostatin(k1-3), 12.1 +/- 2.1% per gram tissue was present in the kidneys 10 min after injection. Accumulation of angiostatin(k1-3) was detectable in spleen, liver, lungs and heart 10 min after injection. Sixty minutes after injection, kidney associated angiostatin(k1-3) had decreased, whereas in stomach and small intestines a small increase was seen. Immunohistochemical analysis demonstrated specific staining of interstitial cells of the kidney, liver Kupffer cells and endothelium of larger blood vessels of the lungs. Renal clearance of angiostatin(k1-3) and/or fragments is a major route of elimination, whereas lack of accumulation of radioactivity in the faeces indicates little hepatic elimination or hepatic elimination followed by enterohepatic cycling of the protein's degradation products. Instant blood coagulation at the site of vascular activation and the occurrence of respiratory problems upon administration of higher doses of angiostatin(k1-3) warrants further investigation of the protein's potential side effects. The data presented can be applied to study the relation between angiostatin(k1-3) treatment regimens, blood concentration levels, anti-tumor activity and harmful effects.
在本研究中,我们测定了静脉注射放射性标记蛋白后,大鼠体内弹性蛋白酶衍生血管抑素[血管抑素(k1 - 3)]的短期药代动力学及全身分布情况。由于在γ相机研究中,未观察到肿瘤特异性血管抑素(k1 - 3)的蓄积,因此在无肿瘤的大鼠中研究了其一般药代动力学。通过对数据进行单室模型拟合,计算得出Km为7.3±1.7μg×ml(-1),Vmax为0.94±0.19μg×min(-1),V为10.9±2.5ml,内在清除率(Vmax/Km)为0.128ml×min(-1)。注射血管抑素(k1 - 3)后10分钟,每克肾脏组织中血管抑素(k1 - 3)占注射剂量(I.D.)的12.1±2.1%。注射后10分钟,在脾脏、肝脏、肺和心脏中可检测到血管抑素(k1 - 3)的蓄积。注射后60分钟,与肾脏相关的血管抑素(k1 - 3)减少,而在胃和小肠中略有增加。免疫组织化学分析显示,肾脏间质细胞、肝脏库普弗细胞和肺较大血管内皮有特异性染色。血管抑素(k1 - 3)和/或其片段经肾脏清除是主要的消除途径,而粪便中缺乏放射性蓄积表明肝脏清除很少,或蛋白质降解产物经肝肠循环后肝脏清除很少。血管激活部位的即时血液凝固以及给予较高剂量血管抑素(k1 - 3)时出现的呼吸问题,值得进一步研究该蛋白的潜在副作用。所呈现的数据可用于研究血管抑素(k1 - 3)治疗方案、血药浓度水平、抗肿瘤活性和有害效应之间的关系。