Suppr超能文献

非线性随机入侵的传播速率。

Spread rate for a nonlinear stochastic invasion.

作者信息

Lewis M A

机构信息

Department of Mathematics, University of Utah, JWB 233, Salt Lake City, UT 84112, USA.

出版信息

J Math Biol. 2000 Nov;41(5):430-54. doi: 10.1007/s002850000022.

Abstract

Despite the recognized importance of stochastic factors, models for ecological invasions are almost exclusively formulated using deterministic equations [29]. Stochastic factors relevant to invasions can be either extrinsic (quantities such as temperature or habitat quality which vary randomly in time and space and are external to the population itself) or intrinsic (arising from a finite population of individuals each reproducing, dying, and interacting with other individuals in a probabilistic manner). It has been long conjectured [27] that intrinsic stochastic factors associated with interacting individuals can slow the spread of a population or disease, even in a uniform environment. While this conjecture has been borne out by numerical simulations, we are not aware of a thorough analytical investigation. In this paper we analyze the effect of intrinsic stochastic factors when individuals interact locally over small neighborhoods. We formulate a set of equations describing the dynamics of spatial moments of the population. Although the full equations cannot be expressed in closed form, a mixture of a moment closure and comparison methods can be used to derive upper and lower bounds for the expected density of individuals. Analysis of the upper solution gives a bound on the rate of spread of the stochastic invasion process which lies strictly below the rate of spread for the deterministic model. The slow spread is most evident when invaders occur in widely spaced high density foci. In this case spatial correlations between individuals mean that density dependent effects are significant even when expected population densities are low. Finally, we propose a heuristic formula for estimating the true rate of spread for the full nonlinear stochastic process based on a scaling argument for moments.

摘要

尽管随机因素的重要性已得到认可,但生态入侵模型几乎都是用确定性方程来构建的[29]。与入侵相关的随机因素可以是外在的(如温度或栖息地质量等在时间和空间上随机变化且种群本身外部的量)或内在的(源于有限个体种群,每个个体以概率方式进行繁殖、死亡并与其他个体相互作用)。长期以来一直有人推测[27],即使在均匀环境中,与相互作用个体相关的内在随机因素也会减缓种群或疾病的传播。虽然这一推测已通过数值模拟得到证实,但我们尚未见到全面的分析研究。在本文中,我们分析了个体在小邻域内局部相互作用时内在随机因素的影响。我们构建了一组描述种群空间矩动态的方程。尽管完整方程无法以封闭形式表示,但可以使用矩封闭和比较方法的组合来推导个体预期密度的上下界。对上限解的分析给出了随机入侵过程传播速率的一个界,该界严格低于确定性模型的传播速率。当入侵者出现在间隔广泛的高密度焦点区域时,传播缓慢最为明显。在这种情况下,个体之间的空间相关性意味着即使预期种群密度较低,密度依赖效应也很显著。最后,我们基于矩的标度论证提出了一个启发式公式,用于估计完整非线性随机过程的真实传播速率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验