Suppr超能文献

随机环境中的气候变化与积分差分方程

Climate Change and Integrodifference Equations in a Stochastic Environment.

作者信息

Bouhours Juliette, Lewis Mark A

机构信息

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, T6G2G1, Canada.

Department of Biological Sciences, University of Alberta, Edmonton, T6G2G1, Canada.

出版信息

Bull Math Biol. 2016 Sep;78(9):1866-1903. doi: 10.1007/s11538-016-0203-z. Epub 2016 Sep 19.

Abstract

Climate change impacts population distributions, forcing some species to migrate poleward if they are to survive and keep up with the suitable habitat that is shifting with the temperature isoclines. Previous studies have analysed whether populations have the capacity to keep up with shifting temperature isoclines, and have mathematically determined the combination of growth and dispersal that is needed to achieve this. However, the rate of isocline movement can be highly variable, with much uncertainty associated with yearly shifts. The same is true for population growth rates. Growth rates can be variable and uncertain, even within suitable habitats for growth. In this paper, we reanalyse the question of population persistence in the context of the uncertainty and variability in isocline shifts and rates of growth. Specifically, we employ a stochastic integrodifference equation model on a patch of suitable habitat that shifts poleward at a random rate. We derive a metric describing the asymptotic growth rate of the linearised operator of the stochastic model. This metric yields a threshold criterion for population persistence. We demonstrate that the variability in the yearly shift and in the growth rate has a significant negative effect on the persistence in the sense that it decreases the threshold criterion for population persistence. Mathematically, we show how the persistence metric can be connected to the principal eigenvalue problem for a related integral operator, at least for the case where isocline shifting speed is deterministic. Analysis of dynamics for the case where the dispersal kernel is Gaussian leads to the existence of a critical shifting speed, above which the population will go extinct, and below which the population will persist. This leads to clear bounds on rate of environmental change if the population is to persist. Finally, we illustrate our different results for butterfly population using numerical simulations and demonstrate how increased variances in isocline shifts and growth rates translate into decreased likelihoods of persistence.

摘要

气候变化影响种群分布,迫使一些物种向极地迁移,以便生存并跟上随温度等值线移动的适宜栖息地。以往的研究分析了种群是否有能力跟上移动的温度等值线,并通过数学方法确定了实现这一目标所需的增长和扩散组合。然而,等值线移动的速度可能变化很大,每年的移动存在很大不确定性。种群增长率也是如此。即使在适宜生长的栖息地内,增长率也可能变化且不确定。在本文中,我们在等值线移动和增长率的不确定性及变异性背景下重新分析种群持续存在的问题。具体而言,我们在一片以随机速度向极地移动的适宜栖息地上采用随机积分差分方程模型。我们推导出一个描述随机模型线性化算子渐近增长率的指标。这个指标产生了种群持续存在的阈值标准。我们证明,年度移动和增长率的变异性对持续性有显著负面影响,即它降低了种群持续存在的阈值标准。在数学上,我们展示了至少在等值线移动速度是确定性的情况下,持续存在指标如何与相关积分算子的主特征值问题相联系。对扩散核为高斯分布的情况进行动力学分析,得出存在一个临界移动速度,高于此速度种群将灭绝,低于此速度种群将持续存在。如果种群要持续存在,这就对环境变化速率给出了明确的界限。最后,我们用数值模拟说明了蝴蝶种群的不同结果,并展示了等值线移动和增长率方差增加如何转化为持续性可能性的降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验