Suppr超能文献

通过对日本慢生根瘤菌染色体410千碱基DNA区域进行测序发现的潜在共生特异性基因。

Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome.

作者信息

Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H

机构信息

Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany.

出版信息

J Bacteriol. 2001 Feb;183(4):1405-12. doi: 10.1128/JB.183.4.1405-1412.2001.

Abstract

The physical and genetic map of the Bradyrhizobium japonicum chromosome revealed that nitrogen fixation and nodulation genes are clustered. Because of the complex interactions between the bacterium and the plant, we expected this chromosomal sector to contain additional genes that are involved in the maintenance of an efficient symbiosis. Therefore, we determined the nucleotide sequence of a 410-kb region. The overall G+C nucleotide content was 59.1%. Using a minimum gene length of 150 nucleotides, 388 open reading frames (ORFs) were selected as coding regions. Thirty-five percent of the predicted proteins showed similarity to proteins of rhizobia. Sixteen percent were similar only to proteins of other bacteria. No database match was found for 29%. Repetitive DNA sequence-derived ORFs accounted for the rest. The sequenced region contained all nitrogen fixation genes and, apart from nodM, all nodulation genes that were known to exist in B. japonicum. We found several genes that seem to encode transport systems for ferric citrate, molybdate, or carbon sources. Some of them are preceded by -24/-12 promoter elements. A number of putative outer membrane proteins and cell wall-modifying enzymes as well as a type III secretion system might be involved in the interaction with the host.

摘要

慢生根瘤菌染色体的物理图谱和遗传图谱显示,固氮基因和结瘤基因是成簇的。由于细菌与植物之间存在复杂的相互作用,我们预计这个染色体区域会包含其他参与维持高效共生关系的基因。因此,我们测定了一个410 kb区域的核苷酸序列。总的G+C核苷酸含量为59.1%。使用150个核苷酸的最小基因长度,选择了388个开放阅读框(ORF)作为编码区。预测蛋白质的35%与根瘤菌的蛋白质相似。16%仅与其他细菌的蛋白质相似。29%未在数据库中找到匹配项。其余的是重复DNA序列衍生的ORF。测序区域包含所有固氮基因,除了nodM之外,还包含慢生根瘤菌中已知存在的所有结瘤基因。我们发现了几个似乎编码柠檬酸铁、钼酸盐或碳源转运系统的基因。其中一些基因之前有-24/-12启动子元件。一些假定的外膜蛋白、细胞壁修饰酶以及一个III型分泌系统可能参与与宿主的相互作用。

相似文献

3
New NodW- or NifA-regulated Bradyrhizobium japonicum genes.
Mol Plant Microbe Interact. 2003 Apr;16(4):342-51. doi: 10.1094/MPMI.2003.16.4.342.
4
One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis.
J Bacteriol. 2001 Feb;183(4):1300-11. doi: 10.1128/JB.183.4.1300-1311.2001.
7
Feedback regulation of the Bradyrhizobium japonicum nodulation genes.
Mol Microbiol. 2001 Sep;41(6):1357-64. doi: 10.1046/j.1365-2958.2001.02603.x.
8
Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum.
Mol Plant Microbe Interact. 2002 Dec;15(12):1228-35. doi: 10.1094/MPMI.2002.15.12.1228.
10
DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii.
Appl Environ Microbiol. 2001 Nov;67(11):4999-5009. doi: 10.1128/AEM.67.11.4999-5009.2001.

引用本文的文献

1
Acetylenotrophic and Diazotrophic sp. Strain I71 from TCE-Contaminated Soils.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0121922. doi: 10.1128/aem.01219-22. Epub 2022 Oct 26.
3
At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont .
Front Cell Infect Microbiol. 2021 Jun 29;11:660007. doi: 10.3389/fcimb.2021.660007. eCollection 2021.
4
Unraveling a Tangled Skein: Evolutionary Analysis of the Bacterial Gibberellin Biosynthetic Operon.
mSphere. 2020 Jun 3;5(3):e00292-20. doi: 10.1128/mSphere.00292-20.
5
InnB, a Novel Type III Effector of USDA61, Controls Symbiosis With Species.
Front Microbiol. 2018 Dec 18;9:3155. doi: 10.3389/fmicb.2018.03155. eCollection 2018.
6
A Third Class: Functional Gibberellin Biosynthetic Operon in Beta-Proteobacteria.
Front Microbiol. 2018 Nov 27;9:2916. doi: 10.3389/fmicb.2018.02916. eCollection 2018.
7
Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Vigna radiata.
Genes (Basel). 2017 Dec 8;8(12):374. doi: 10.3390/genes8120374.
9
Characterization of CYP115 As a Gibberellin 3-Oxidase Indicates That Certain Rhizobia Can Produce Bioactive Gibberellin A.
ACS Chem Biol. 2017 Apr 21;12(4):912-917. doi: 10.1021/acschembio.6b01038. Epub 2017 Feb 16.
10
Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
Appl Environ Microbiol. 2016 Aug 15;82(17):5259-68. doi: 10.1128/AEM.01116-16. Print 2016 Sep 1.

本文引用的文献

1
Insertion and deletion mutations within the nif region of Rhizobium japonicum.
Plant Mol Biol. 1984 May;3(3):159-68. doi: 10.1007/BF00016063.
3
Uptake and Metabolism of Carbohydrates by Bradyrhizobium japonicum Bacteroids.
Plant Physiol. 1987 Mar;83(3):535-40. doi: 10.1104/pp.83.3.535.
4
Inhibition of ethylene production by rhizobitoxine.
Plant Physiol. 1971 Jul;48(1):1-4. doi: 10.1104/pp.48.1.1.
5
Translocation of iron citrate and phosphorus in xylem exudate of soybean.
Plant Physiol. 1970 Mar;45(3):280-3. doi: 10.1104/pp.45.3.280.
7
C(4)-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens.
Proc Natl Acad Sci U S A. 1981 Jul;78(7):4284-8. doi: 10.1073/pnas.78.7.4284.
8
Siderophore Utilization by Bradyrhizobium japonicum.
Appl Environ Microbiol. 1993 May;59(5):1688-90. doi: 10.1128/aem.59.5.1688-1690.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验