Suppr超能文献

日本慢生根瘤菌中两个hemN基因之一在厌氧生长和共生过程中发挥功能。

One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis.

作者信息

Fischer H M, Velasco L, Delgado M J, Bedmar E J, Schären S, Zingg D, Göttfert M, Hennecke H

机构信息

Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.

出版信息

J Bacteriol. 2001 Feb;183(4):1300-11. doi: 10.1128/JB.183.4.1300-1311.2001.

Abstract

Previously, we screened the symbiotic gene region of the Bradyrhizobium japonicum chromosome for new NifA-dependent genes by competitive DNA-RNA hybridization (A. Nienaber, A. Huber, M. Göttfert, H. Hennecke, and H. M. Fischer, J. Bacteriol. 182:1472-1480, 2000). Here we report more details on one of the genes identified, a hemN-like gene (now called hemN(1)) whose product exhibits significant similarity to oxygen-independent coproporphyrinogen III dehydrogenases involved in heme biosynthesis in facultatively anaerobic bacteria. In the course of these studies, we discovered that B. japonicum possesses a second hemN-like gene (hemN(2)), which was then cloned by using hemN(1) as a probe. The hemN(2) gene maps outside of the symbiotic gene region; it is located 1.5 kb upstream of nirK, the gene for a Cu-containing nitrite reductase. The two deduced HemN proteins are similar in size (445 and 450 amino acids for HemN(1) and HemN(2), respectively) and share 53% identical (68% similar) amino acids. Expression of both hemN genes was monitored with the help of chromosomally integrated translational lacZ fusions. No significant expression of either gene was detected in aerobically grown cells, whereas both genes were strongly induced (> or = 20-fold) under microaerobic or anaerobic conditions. Induction was in both cases dependent on the transcriptional activator protein FixK(2). In addition, maximal anaerobic hemN(1) expression was partially dependent on NifA, which explains why this gene had been identified by the competitive DNA-RNA hybridization approach. Strains were constructed carrying null mutations either in individual hemN genes or simultaneously in both genes. All mutants showed normal growth in rich medium under aerobic conditions. Unlike the hemN(1) mutant, strains lacking a functional hemN(2) gene were unable to grow anaerobically under nitrate-respiring conditions and largely failed to fix nitrogen in symbiosis with the soybean host plant. Moreover, these mutants lacked several c-type cytochromes which are normally detectable by heme staining of proteins from anaerobically grown wild-type cells. Taken together, our results revealed that B. japonicum hemN(2), but not hemN(1), encodes a protein that is functional under the conditions tested, and this conclusion was further corroborated by the successful complementation of a Salmonella enterica serovar Typhimurium hemF hemN mutant with hemN(2) only.

摘要

此前,我们通过竞争性DNA - RNA杂交技术,对日本慢生根瘤菌染色体的共生基因区域进行筛选,以寻找新的依赖NifA的基因(A. Nienaber、A. Huber、M. Göttfert、H. Hennecke和H. M. Fischer,《细菌学杂志》182:1472 - 1480,2000年)。在此,我们报告所鉴定出的其中一个基因的更多细节,这是一个类hemN基因(现称为hemN(1)),其产物与兼性厌氧细菌中参与血红素生物合成的不依赖氧的粪卟啉原III脱氢酶具有显著相似性。在这些研究过程中,我们发现日本慢生根瘤菌拥有第二个类hemN基因(hemN(2)),随后以hemN(1)为探针将其克隆。hemN(2)基因定位于共生基因区域之外;它位于nirK基因(一种含铜亚硝酸还原酶的基因)上游1.5 kb处。推导的两种HemN蛋白大小相似(HemN(1)和HemN(2)分别为445和450个氨基酸),并共享53%的相同氨基酸(68%的相似氨基酸)。借助染色体整合的翻译lacZ融合体监测了两个hemN基因的表达。在需氧生长的细胞中未检测到任何一个基因的显著表达,而在微需氧或厌氧条件下,两个基因均被强烈诱导(≥20倍)。在这两种情况下,诱导均依赖于转录激活蛋白FixK(2)。此外,hemN(1)在厌氧条件下的最大表达部分依赖于NifA,这解释了为什么该基因是通过竞争性DNA - RNA杂交方法鉴定出来的。构建了在单个hemN基因或两个基因同时存在无效突变的菌株。所有突变体在需氧条件下的丰富培养基中生长正常。与hemN(1)突变体不同,缺乏功能性hemN(2)基因的菌株在硝酸盐呼吸条件下无法厌氧生长,并且在与大豆宿主植物共生时基本上无法固氮。此外,这些突变体缺乏几种c型细胞色素,而这些细胞色素在厌氧生长的野生型细胞蛋白质的血红素染色中通常是可检测到的。综上所述,我们的结果表明,日本慢生根瘤菌的hemN(2)而非hemN(1)编码一种在所测试条件下具有功能的蛋白质,并且仅用hemN(2)成功互补肠炎沙门氏菌鼠伤寒血清型hemF hemN突变体进一步证实了这一结论。

相似文献

1
One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis.
J Bacteriol. 2001 Feb;183(4):1300-11. doi: 10.1128/JB.183.4.1300-1311.2001.
5
Transcriptional control of Bacillus subtilis hemN and hemZ.
J Bacteriol. 1999 Oct;181(19):5922-9. doi: 10.1128/JB.181.19.5922-5929.1999.
6
Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR.
J Bacteriol. 1998 Aug;180(15):3853-63. doi: 10.1128/JB.180.15.3853-3863.1998.
7
9
NifA is required for maximal expression of denitrification genes in Bradyrhizobium japonicum.
Environ Microbiol. 2010 Feb;12(2):393-400. doi: 10.1111/j.1462-2920.2009.02076.x. Epub 2009 Oct 16.
10
Characterization of Bacillus subtilis hemN.
J Bacteriol. 1997 Nov;179(22):7181-5. doi: 10.1128/jb.179.22.7181-7185.1997.

引用本文的文献

1
The NmpRSTU multi-component signaling system of regulates expression of an oxygen utilization regulon.
J Bacteriol. 2025 Feb 20;207(2):e0028024. doi: 10.1128/jb.00280-24. Epub 2025 Jan 27.
2
HemN2 Regulates the Virulence of HYS through 7-Hydroxytropolone Synthesis and Oxidative Stress.
Biology (Basel). 2024 May 24;13(6):373. doi: 10.3390/biology13060373.
3
harbors a hypoxia-responsive coproporphyrinogen dehydrogenase-like protein.
mSphere. 2024 Mar 26;9(3):e0009224. doi: 10.1128/msphere.00092-24. Epub 2024 Feb 27.
4
harbors a hypoxia-responsive coproporphyrinogen dehydrogenase-like protein.
bioRxiv. 2023 Nov 16:2023.11.16.567449. doi: 10.1101/2023.11.16.567449.
6
Expanding the Regulon of the NnrR Transcription Factor: New Insights Into the Denitrification Pathway.
Front Microbiol. 2019 Aug 20;10:1926. doi: 10.3389/fmicb.2019.01926. eCollection 2019.
7
An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in .
Front Microbiol. 2019 May 7;10:924. doi: 10.3389/fmicb.2019.00924. eCollection 2019.
8
Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
Microbiol Mol Biol Rev. 2017 Jan 25;81(1). doi: 10.1128/MMBR.00048-16. Print 2017 Mar.
9
Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile.
Appl Environ Microbiol. 2012 Apr;78(8):2896-903. doi: 10.1128/AEM.07336-11. Epub 2012 Feb 3.
10
Genome-wide transcriptional and physiological responses of Bradyrhizobium japonicum to paraquat-mediated oxidative stress.
Appl Environ Microbiol. 2011 Jun;77(11):3633-43. doi: 10.1128/AEM.00047-11. Epub 2011 Apr 15.

本文引用的文献

1
Insertion and deletion mutations within the nif region of Rhizobium japonicum.
Plant Mol Biol. 1984 May;3(3):159-68. doi: 10.1007/BF00016063.
4
Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum.
Microbiology (Reading). 2000 Mar;146 ( Pt 3):669-676. doi: 10.1099/00221287-146-3-669.
6
Transcriptional control of Bacillus subtilis hemN and hemZ.
J Bacteriol. 1999 Oct;181(19):5922-9. doi: 10.1128/JB.181.19.5922-5929.1999.
7
The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification.
J Bacteriol. 1999 May;181(9):2802-6. doi: 10.1128/JB.181.9.2802-2806.1999.
8
10
Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR.
J Bacteriol. 1998 Aug;180(15):3853-63. doi: 10.1128/JB.180.15.3853-3863.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验