Suppr超能文献

类核对大肠杆菌中FtsZ环和MinE环定位的影响。

Influence of the nucleoid on placement of FtsZ and MinE rings in Escherichia coli.

作者信息

Sun Q, Margolin W

机构信息

Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, Texas 77030, USA.

出版信息

J Bacteriol. 2001 Feb;183(4):1413-22. doi: 10.1128/JB.183.4.1413-1422.2001.

Abstract

We previously presented evidence that replicating but unsegregated nucleoids, along with the Min system, act as topological inhibitors to restrict assembly of the FtsZ ring (Z ring) to discrete sites in the cell. To test if nonreplicating nucleoids have similar exclusion effects, we examined Z rings in dnaA (temperature sensitive) mutants. Z rings were excluded from centrally localized nucleoids and were often observed at nucleoid edges. Cells with nonreplicating nucleoids formed filaments, some of which contained large nucleoid-free areas in which Z rings were positioned at regular intervals. Because MinE may protect FtsZ from the action of the MinC inhibitor in these nucleoid-free zones, we examined the localization of a MinE-green fluorescent protein (GFP) fusion with respect to Z rings and nucleoids. Like Z rings, MinE-GFP appeared to localize independently of nucleoid position, forming rings at regular intervals in nucleoid-free regions. Unlike FtsZ, however, MinE-GFP often localized on top of nucleoids, replicating or not, suggesting that MinE is relatively insensitive to the nucleoid inhibition effect. These data suggest that both replicating and nonreplicating nucleoids are capable of topologically excluding Z rings but not MinE.

摘要

我们之前提出的证据表明,正在复制但未分离的类核,连同Min系统,作为拓扑抑制剂,将FtsZ环(Z环)的组装限制在细胞内的离散位点。为了测试非复制类核是否具有类似的排斥作用,我们检查了dnaA(温度敏感型)突变体中的Z环。Z环被排除在位于细胞中央的类核之外,并且经常在类核边缘观察到。具有非复制类核的细胞形成细丝,其中一些含有大的无类核区域,Z环以规则间隔位于这些区域中。由于MinE可能在这些无类核区域保护FtsZ免受MinC抑制剂的作用,我们检查了MinE-绿色荧光蛋白(GFP)融合蛋白相对于Z环和类核的定位。与Z环一样,MinE-GFP似乎独立于类核位置进行定位,在无类核区域以规则间隔形成环。然而,与FtsZ不同的是,MinE-GFP经常定位在类核之上,无论类核是否正在复制,这表明MinE对类核抑制作用相对不敏感。这些数据表明,正在复制和非复制的类核都能够在拓扑上排斥Z环,但不能排斥MinE。

相似文献

1
Influence of the nucleoid on placement of FtsZ and MinE rings in Escherichia coli.
J Bacteriol. 2001 Feb;183(4):1413-22. doi: 10.1128/JB.183.4.1413-1422.2001.
2
Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly.
J Bacteriol. 2004 Jun;186(12):3951-9. doi: 10.1128/JB.186.12.3951-3959.2004.
3
FtsZ rings in mukB mutants with or without the Min system.
Biochimie. 2001 Jan;83(1):125-9. doi: 10.1016/s0300-9084(00)01222-0.
5
Assembly of the FtsZ ring at the central division site in the absence of the chromosome.
Mol Microbiol. 1998 Jul;29(2):491-503. doi: 10.1046/j.1365-2958.1998.00942.x.
6
FtsZ ring formation without subsequent cell division after replication runout in Escherichia coli.
Mol Microbiol. 2000 Jun;36(6):1349-59. doi: 10.1046/j.1365-2958.2000.01949.x.
7
Differences in MinC/MinD sensitivity between polar and internal Z rings in Escherichia coli.
J Bacteriol. 2011 Jan;193(2):367-76. doi: 10.1128/JB.01095-10. Epub 2010 Nov 19.
9
Delayed nucleoid segregation in Escherichia coli.
Mol Microbiol. 1999 Sep;33(5):959-70. doi: 10.1046/j.1365-2958.1999.01535.x.

引用本文的文献

1
Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins.
Front Microbiol. 2022 May 26;13:856547. doi: 10.3389/fmicb.2022.856547. eCollection 2022.
2
The Min system and other nucleoid-independent regulators of Z ring positioning.
Front Microbiol. 2015 May 13;6:478. doi: 10.3389/fmicb.2015.00478. eCollection 2015.
3
Localization of anionic phospholipids in Escherichia coli cells.
J Bacteriol. 2014 Oct;196(19):3386-98. doi: 10.1128/JB.01877-14. Epub 2014 Jul 7.
4
Asymmetric constriction of dividing Escherichia coli cells induced by expression of a fusion between two min proteins.
J Bacteriol. 2014 Jun;196(11):2089-100. doi: 10.1128/JB.01425-13. Epub 2014 Mar 28.
5
The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly.
PLoS Genet. 2014 Mar 20;10(3):e1004217. doi: 10.1371/journal.pgen.1004217. eCollection 2014 Mar.
8
Mathematical model for positioning the FtsZ contractile ring in Escherichia coli.
J Math Biol. 2014 Mar;68(4):911-30. doi: 10.1007/s00285-013-0652-z. Epub 2013 Feb 26.
10
Cell size control in bacteria.
Curr Biol. 2012 May 8;22(9):R340-9. doi: 10.1016/j.cub.2012.02.032. Epub 2012 May 7.

本文引用的文献

1
Themes and variations in prokaryotic cell division.
FEMS Microbiol Rev. 2000 Oct;24(4):531-48. doi: 10.1111/j.1574-6976.2000.tb00554.x.
2
FtsZ ring formation without subsequent cell division after replication runout in Escherichia coli.
Mol Microbiol. 2000 Jun;36(6):1349-59. doi: 10.1046/j.1365-2958.2000.01949.x.
4
Bacterial division: Finding the dividing line.
Curr Biol. 2000 Mar 23;10(6):R249-52. doi: 10.1016/s0960-9822(00)00376-6.
5
Bacterial cell division.
Annu Rev Genet. 1999;33:423-48. doi: 10.1146/annurev.genet.33.1.423.
6
Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I.
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1671-6. doi: 10.1073/pnas.030528397.
8
The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization.
Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14819-24. doi: 10.1073/pnas.96.26.14819.
10
MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli.
J Bacteriol. 1999 Oct;181(20):6419-24. doi: 10.1128/JB.181.20.6419-6424.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验