Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
J Bacteriol. 2011 Jan;193(2):367-76. doi: 10.1128/JB.01095-10. Epub 2010 Nov 19.
In Escherichia coli the Z ring has the potential to assemble anywhere along the cell length but is restricted to midcell by the action of negative regulatory systems, including Min. In the current model for the Min system, the MinC/MinD division inhibitory complex is evenly distributed on the membrane and can disrupt Z rings anywhere in the cell; however, MinE spatially regulates MinC/MinD by restricting it to the cell poles, thus allowing Z ring formation at midcell. This model assumes that Z rings formed at different cellular locations have equal sensitivity to MinC/MinD in the absence of MinE. However, here we report evidence that differences in MinC/MinD sensitivity between polar and nonpolar Z rings exists even when there is no MinE. MinC/MinD at proper levels is able to block minicell production in Δmin strains without increasing the cell length, indicating that polar Z rings are preferentially blocked. In the FtsZ-I374V strain (which is resistant to MinC(C)/MinD), wild-type morphology can be easily achieved with MinC/MinD in the absence of MinE. We also show that MinC/MinD at proper levels can rescue the lethal phenotype of a min slmA double deletion mutant, which we think is due to the elimination of polar Z rings (or FtsZ structures), which frees up FtsZ molecules for assembly of Z rings at internal sites to rescue division and growth. Taken together, these data indicate that polar Z rings are more susceptible to MinC/MinD than internal Z rings, even when MinE is absent.
在大肠杆菌中,Z 环有可能在细胞长度的任何地方组装,但受到负向调节系统(包括 Min 系统)的限制,只能位于细胞中部。在 Min 系统的现行模型中,MinC/MinD 分裂抑制复合物均匀地分布在细胞膜上,可以在细胞的任何部位破坏 Z 环;然而,MinE 通过将 MinC/MinD 限制在细胞两极,从而在细胞中部允许 Z 环形成,从而对 MinC/MinD 进行空间调节。该模型假设,在没有 MinE 的情况下,在不同细胞位置形成的 Z 环对 MinC/MinD 的敏感性相同。然而,在这里我们报告的证据表明,即使没有 MinE,极性 Z 环和非极性 Z 环之间对 MinC/MinD 的敏感性存在差异。适当水平的 MinC/MinD 能够阻止Δmin 菌株中产生小菌落,而不会增加细胞长度,这表明极性 Z 环优先被阻止。在 FtsZ-I374V 菌株(对 MinC(C)/MinD 具有抗性)中,在没有 MinE 的情况下,即使存在 MinC/MinD,也可以轻松实现野生型形态。我们还表明,适当水平的 MinC/MinD 可以挽救 min slmA 双缺失突变体的致死表型,我们认为这是由于消除了极性 Z 环(或 FtsZ 结构),从而释放了 FtsZ 分子,用于在内部位点组装 Z 环,以挽救分裂和生长。综上所述,这些数据表明,即使没有 MinE,极性 Z 环比内部 Z 环更容易受到 MinC/MinD 的影响。