Suppr超能文献

弱蛋白质-蛋白质相互作用的计算:第二维里系数的pH依赖性

Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient.

作者信息

Elcock A H, McCammon J A

机构信息

Department of Chemistry and Biochemistry, Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0365, USA.

出版信息

Biophys J. 2001 Feb;80(2):613-25. doi: 10.1016/S0006-3495(01)76042-0.

Abstract

Interactions between proteins are often sufficiently weak that their study through the use of conventional structural techniques becomes problematic. Of the few techniques capable of providing experimental measures of weak protein-protein interactions, perhaps the most useful is the second virial coefficient, B(22), which quantifies a protein solution's deviations from ideal behavior. It has long been known that B(22) can in principle be computed, but only very recently has it been demonstrated that such calculations can be performed using protein models of true atomic detail (Biophys. J. 1998, 75:2469-2477). The work reported here extends these previous efforts in an attempt to develop a transferable energetic model capable of reproducing the experimental trends obtained for two different proteins over a range of pH and ionic strengths. We describe protein-protein interaction energies by a combination of three separate terms: (i) an electrostatic interaction term based on the use of effective charges, (ii) a term describing the electrostatic desolvation that occurs when charged groups are buried by an approaching protein partner, and (iii) a solvent-accessible surface area term that is used to describe contributions from van der Waals and hydrophobic interactions. The magnitude of the third term is governed by an adjustable, empirical parameter, gamma, that is altered to optimize agreement between calculated and experimental values of B(22). The model is applied separately to the proteins lysozyme and chymotrypsinogen, yielding optimal values of gamma that are almost identical. There are, however, clear difficulties in reproducing B(22) values at the extremes of pH. Explicit calculation of the protonation states of ionizable amino acids in the 200 most energetically favorable protein-protein structures suggest that these difficulties are due to a neglect of the protonation state changes that can accompany complexation. Proper reproduction of the pH dependence of B(22) will, therefore, almost certainly require that account be taken of these protonation state changes. Despite this problem, the fact that almost identical gamma values are obtained from two different proteins suggests that the basic energetic formulation used here, which can be evaluated very rapidly, might find use in dynamical simulations of weak protein-protein interactions at intermediate pH values.

摘要

蛋白质之间的相互作用通常很弱,以至于使用传统结构技术对其进行研究变得很困难。在能够提供弱蛋白质 - 蛋白质相互作用实验测量值的少数技术中,也许最有用的是第二维里系数B(22),它量化了蛋白质溶液与理想行为的偏差。长期以来人们都知道原则上可以计算B(22),但直到最近才证明可以使用具有真实原子细节的蛋白质模型进行此类计算(《生物物理杂志》,1998年,75卷:2469 - 2477页)。本文报道的工作扩展了之前的这些努力,试图开发一种可转移的能量模型,该模型能够在一系列pH值和离子强度下重现两种不同蛋白质的实验趋势。我们通过三个独立项的组合来描述蛋白质 - 蛋白质相互作用能:(i) 基于有效电荷使用的静电相互作用项;(ii) 描述当带电基团被接近的蛋白质伙伴掩埋时发生的静电去溶剂化的项;(iii) 用于描述范德华力和疏水相互作用贡献的溶剂可及表面积项。第三项的大小由一个可调整的经验参数γ控制,通过改变γ来优化计算得到的B(22)值与实验值之间的一致性。该模型分别应用于溶菌酶和胰凝乳蛋白酶原,得到的γ最佳值几乎相同。然而,在重现极端pH值下的B(22)值时存在明显困难。对200个能量最有利的蛋白质 - 蛋白质结构中可电离氨基酸的质子化状态进行明确计算表明,这些困难是由于忽略了络合过程中可能伴随的质子化状态变化。因此,要正确重现B(22)对pH的依赖性几乎肯定需要考虑这些质子化状态变化。尽管存在这个问题,但从两种不同蛋白质获得几乎相同的γ值这一事实表明,这里使用的基本能量公式可以非常快速地评估,可能在中等pH值下弱蛋白质 - 蛋白质相互作用的动力学模拟中有用。

相似文献

1
Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient.
Biophys J. 2001 Feb;80(2):613-25. doi: 10.1016/S0006-3495(01)76042-0.
2
A mesoscopic model for protein-protein interactions in solution.
Biophys J. 2003 Nov;85(5):2940-7. doi: 10.1016/S0006-3495(03)74714-6.
4
Light-scattering studies of protein solutions: role of hydration in weak protein-protein interactions.
Biophys J. 2005 Sep;89(3):1564-73. doi: 10.1529/biophysj.105.065284. Epub 2005 Jun 24.
6
A two level hierarchical model of protein retention in ion exchange chromatography.
J Chromatogr A. 2015 Sep 11;1411:50-62. doi: 10.1016/j.chroma.2015.07.101. Epub 2015 Jul 29.
7
Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.
Biophys J. 2002 Mar;82(3):1620-31. doi: 10.1016/S0006-3495(02)75513-6.
8
Molecular origins of osmotic second virial coefficients of proteins.
Biophys J. 1998 Nov;75(5):2469-77. doi: 10.1016/S0006-3495(98)77691-X.
9
Electrostatic contributions to the stability of halophilic proteins.
J Mol Biol. 1998 Jul 24;280(4):731-48. doi: 10.1006/jmbi.1998.1904.
10
Screening of protein-ligand interactions by affinity chromatography.
Biotechnol Prog. 2003 Mar-Apr;19(2):575-9. doi: 10.1021/bp025725g.

引用本文的文献

1
ATP and Tri-Polyphosphate (TPP) Suppress Protein Aggregate Growth by a Supercharging Mechanism.
Biomedicines. 2021 Nov 9;9(11):1646. doi: 10.3390/biomedicines9111646.
2
Decorated networks of native proteins: nanomaterials with tunable mesoscopic domain size.
Soft Matter. 2021 Jul 28;17(28):6873-6883. doi: 10.1039/d0sm02269a. Epub 2021 Jul 7.
3
Calculation of Second Virial Coefficients of Atomistic Proteins Using Fast Fourier Transform.
J Phys Chem B. 2019 Oct 3;123(39):8203-8215. doi: 10.1021/acs.jpcb.9b06808. Epub 2019 Sep 19.
4
Measuring the effects of macromolecular crowding on antibody function with biolayer interferometry.
MAbs. 2019 Oct;11(7):1319-1330. doi: 10.1080/19420862.2019.1647744. Epub 2019 Aug 12.
5
Viscosity Control of Protein Solution by Small Solutes: A Review.
Curr Protein Pept Sci. 2018;19(8):746-758. doi: 10.2174/1389203719666171213114919.
6
Charge Shielding Prevents Aggregation of Supercharged GFP Variants at High Protein Concentration.
Mol Pharm. 2017 Oct 2;14(10):3269-3280. doi: 10.1021/acs.molpharmaceut.7b00322. Epub 2017 Sep 18.
7
8
Critical examination of the colloidal particle model of globular proteins.
Biophys J. 2015 Feb 3;108(3):724-37. doi: 10.1016/j.bpj.2014.11.3483.
10

本文引用的文献

1
Calculation of short-range interactions between proteins.
Biophys Chem. 1999 Apr 19;78(3):219-31. doi: 10.1016/s0301-4622(99)00028-9.
3
Kinetics of desolvation-mediated protein-protein binding.
Biophys J. 2000 Mar;78(3):1094-105. doi: 10.1016/S0006-3495(00)76668-9.
5
Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry.
J Mol Biol. 1999 Dec 17;294(5):1181-9. doi: 10.1006/jmbi.1999.3332.
6
Tanford-Kirkwood electrostatics for protein modeling.
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11145-50. doi: 10.1073/pnas.96.20.11145.
8
Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin.
J Mol Biol. 1999 Aug 6;291(1):149-62. doi: 10.1006/jmbi.1999.2919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验