Suppr超能文献

离子选择性过滤器调节局部麻醉药对G蛋白门控内向整流钾通道的抑制作用。

Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.

作者信息

Slesinger P A

机构信息

The Salk Institute for Biological Studies, Peptide Biology Lab, La Jolla, California 92037, USA.

出版信息

Biophys J. 2001 Feb;80(2):707-18. doi: 10.1016/S0006-3495(01)76050-X.

Abstract

The weaver mutation (G156S) in G-protein-gated inwardly rectifying K+ (GIRK) channels alters ion selectivity and reveals sensitivity to inhibition by a charged local anesthetic, QX-314, applied extracellularly. In this paper, disrupting the ion selectivity in another GIRK channel, chimera I1G1(M), generates a GIRK channel that is also inhibited by extracellular local anesthetics. I1G1(M) is a chimera of IRK1 (G-protein-insensitive) and GIRK1 and contains the hydrophobic domains (M1-pore-loop-M2) of GIRK1 (G1(M)) with the N- and C-terminal domains of IRK1 (I1). The local anesthetic binding site in I1G1(M) is indistinguishable from that in GIRK2(wv) channels. Whereas chimera I1G1(M) loses K+ selectivity, although there are no mutations in the pore-loop complex, chimera I1G2(M), which contains the hydrophobic domain from GIRK2, exhibits normal K+ selectivity. Mutation of two amino acids that are unique in the pore-loop complex of GIRK1 (F137S and A143T) restores K+ selectivity and eliminates the inhibition by extracellular local anesthetics, suggesting that the pore-loop complex prevents QX-314 from reaching the intrapore site. Alanine mutations in the extracellular half of the M2 transmembrane domain alter QX-314 inhibition, indicating the M2 forms part of the intrapore binding site. Finally, the inhibition of G-protein-activated currents by intracellular QX-314 appears to be different from that observed in nonselective GIRK channels. The results suggest that inward rectifiers contain an intrapore-binding site for local anesthetic that is normally inaccessible from extracellular charged local anesthetics.

摘要

G蛋白门控内向整流钾离子(GIRK)通道中的织工突变(G156S)改变了离子选择性,并显示出对细胞外施加的带电荷局部麻醉药QX-314抑制作用的敏感性。在本文中,破坏另一种GIRK通道(嵌合体I1G1(M))中的离子选择性,产生了一种也受细胞外局部麻醉药抑制的GIRK通道。I1G1(M)是IRK1(G蛋白不敏感)和GIRK1的嵌合体,包含GIRK1(G1(M))的疏水结构域(M1-孔环-M2)以及IRK1(I1)的N端和C端结构域。I1G1(M)中的局部麻醉药结合位点与GIRK2(wv)通道中的无异。虽然孔环复合物中没有突变,但嵌合体I1G1(M)失去了钾离子选择性,而包含GIRK2疏水结构域的嵌合体I1G2(M)则表现出正常的钾离子选择性。GIRK1孔环复合物中特有的两个氨基酸(F137S和A143T)发生突变可恢复钾离子选择性,并消除细胞外局部麻醉药的抑制作用,这表明孔环复合物可阻止QX-314到达孔内位点。M2跨膜结构域细胞外半段的丙氨酸突变改变了QX-314的抑制作用,表明M2构成孔内结合位点的一部分。最后,细胞内QX-314对G蛋白激活电流的抑制作用似乎与在非选择性GIRK通道中观察到的不同。结果表明,内向整流器含有一个局部麻醉药的孔内结合位点,该位点通常无法被细胞外带电荷的局部麻醉药所接近。

相似文献

2
Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels.
Anesthesiology. 2001 Jul;95(1):144-53. doi: 10.1097/00000542-200107000-00025.
4
Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels.
Proc Natl Acad Sci U S A. 2001 May 22;98(11):6482-7. doi: 10.1073/pnas.111447798. Epub 2001 May 15.
5
7
Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit.
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14193-8. doi: 10.1073/pnas.93.24.14193.
8
The sensitivity of G protein-activated K+ channels toward halothane is essentially determined by the C terminus.
J Biol Chem. 2004 Aug 13;279(33):34240-9. doi: 10.1074/jbc.M403448200. Epub 2004 Jun 2.
10
The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K+ channel.
FEBS Lett. 1996 Jan 22;379(1):31-7. doi: 10.1016/0014-5793(95)01465-9.

引用本文的文献

1
2
Non-sedating antihistamines block G-protein-gated inwardly rectifying K channels.
Br J Pharmacol. 2019 Sep;176(17):3161-3179. doi: 10.1111/bph.14717. Epub 2019 Jul 10.
3
Gain-of-function KCNJ6 Mutation in a Severe Hyperkinetic Movement Disorder Phenotype.
Neuroscience. 2018 Aug 1;384:152-164. doi: 10.1016/j.neuroscience.2018.05.031. Epub 2018 May 29.
5
Alcohol modulation of G-protein-gated inwardly rectifying potassium channels: from binding to therapeutics.
Front Physiol. 2014 Feb 25;5:76. doi: 10.3389/fphys.2014.00076. eCollection 2014.
6
Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events.
J Neurophysiol. 2013 Mar;109(5):1296-306. doi: 10.1152/jn.00232.2012. Epub 2012 Dec 5.
8
Neuropeptide Y suppresses anorexigenic output from the ventromedial nucleus of the hypothalamus.
J Neurosci. 2010 Mar 3;30(9):3380-90. doi: 10.1523/JNEUROSCI.4031-09.2010.
10
Base of pore loop is important for rectification, activation, permeation, and block of Kir3.1/Kir3.4.
Biophys J. 2006 Jun 1;90(11):4018-34. doi: 10.1529/biophysj.105.073569. Epub 2006 Mar 2.

本文引用的文献

1
[Mechanism of membrane effect of acetylcholine on myocardial fibers].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1958;266(3):324-34. doi: 10.1007/BF00416781.
2
Structure and dynamics of the pore of inwardly rectifying K(ATP) channels.
J Biol Chem. 2000 Jan 14;275(2):1137-44. doi: 10.1074/jbc.275.2.1137.
4
Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification.
Neuron. 1999 Mar;22(3):571-80. doi: 10.1016/s0896-6273(00)80711-4.
5
Transmembrane structure of an inwardly rectifying potassium channel.
Cell. 1999 Mar 19;96(6):879-91. doi: 10.1016/s0092-8674(00)80597-8.
6
Tetraethylammonium block of the BNC1 channel.
Biophys J. 1999 Mar;76(3):1377-83. doi: 10.1016/S0006-3495(99)77299-1.
7
Molecular mechanism of diltiazem interaction with L-type Ca2+ channels.
J Biol Chem. 1998 Oct 16;273(42):27205-12. doi: 10.1074/jbc.273.42.27205.
8
9
The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
Science. 1998 Apr 3;280(5360):69-77. doi: 10.1126/science.280.5360.69.
10
Sodium channel selectivity filter regulates antiarrhythmic drug binding.
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14126-31. doi: 10.1073/pnas.94.25.14126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验