Suppr超能文献

细胞和网络机制可能会在类似海马体的电路中产生对连续物体遭遇的稀疏编码。

Cellular and Network Mechanisms May Generate Sparse Coding of Sequential Object Encounters in Hippocampal-Like Circuits.

机构信息

Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada

Department of Bioengineering, Stanford University, Stanford, CA 94305.

出版信息

eNeuro. 2019 Aug 20;6(4). doi: 10.1523/ENEURO.0108-19.2019. Print 2019 Jul/Aug.

Abstract

The localization of distinct landmarks plays a crucial role in encoding new spatial memories. In mammals, this function is performed by hippocampal neurons that sparsely encode an animal's location relative to surrounding objects. Similarly, the dorsolateral pallium (DL) is essential for spatial learning in teleost fish. The DL of weakly electric gymnotiform fish receives both electrosensory and visual input from the preglomerular nucleus (PG), which has been hypothesized to encode the temporal sequence of electrosensory or visual landmark/food encounters. Here, we show that DL neurons in the fish and in the (goldfish) have a hyperpolarized resting membrane potential (RMP) combined with a high and dynamic spike threshold that increases following each spike. Current-evoked spikes in DL cells are followed by a strong small-conductance calcium-activated potassium channel (SK)-mediated after-hyperpolarizing potential (AHP). Together, these properties prevent high frequency and continuous spiking. The resulting sparseness of discharge and dynamic threshold suggest that DL neurons meet theoretical requirements for generating spatial memory engrams by decoding the landmark/food encounter sequences encoded by PG neurons. Thus, DL neurons in teleost fish may provide a promising, simple system to study the core cell and network mechanisms underlying spatial memory.

摘要

不同地标物的定位在编码新的空间记忆中起着至关重要的作用。在哺乳动物中,这一功能是由海马神经元完成的,它们稀疏地编码动物相对于周围物体的位置。同样,硬骨鱼的背外侧脑皮层(DL)对空间学习至关重要。弱电电鳗鱼的 DL 接收来自前脑核(PG)的电感觉和视觉输入,PG 被假设编码电感觉或视觉地标/食物遭遇的时间序列。在这里,我们表明, 鱼和 (金鱼)的 DL 神经元具有超极化的静息膜电位(RMP),以及高动态的 Spike 阈值,该阈值在每次 Spike 后增加。DL 细胞中的电流诱发 Spike 后,会紧随一个强的小电导钙激活钾通道(SK)介导的后超极化电位(AHP)。这些特性共同防止高频和连续 Spike。由此产生的放电稀疏性和动态阈值表明,DL 神经元通过解码 PG 神经元编码的地标/食物遭遇序列,满足生成空间记忆印痕的理论要求。因此,硬骨鱼的 DL 神经元可能为研究空间记忆的核心细胞和网络机制提供了一个有前途的简单系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05e8/6709220/25acdbcfb260/enu9991929980001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验