Suppr超能文献

ATP interaction with the open state of the K(ATP) channel.

作者信息

Enkvetchakul D, Loussouarn G, Makhina E, Nichols C G

机构信息

Division of Renal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Biophys J. 2001 Feb;80(2):719-28. doi: 10.1016/S0006-3495(01)76051-1.

Abstract

The mechanism of ATP-sensitive potassium (K(ATP)) channel closure by ATP is unclear, and various kinetic models in which ATP binds to open or to closed states have previously been presented. Effects of phosphatidylinositol bisphosphate (PIP2) and multiple Kir6.2 mutations on ATP inhibition and open probability in the absence of ATP are explainable in kinetic models where ATP stabilizes a closed state and interaction with an open state is not required. Evidence that ATP can in fact interact with the open state of the channel is presented here. The mutant Kir6.2[L164C] is very sensitive to Cd2+ block, but very insensitive to ATP, with no significant inhibition in 1 mM ATP. However, 1 mM ATP fully protects the channel from Cd2+ block. Allosteric kinetic models in which the channel can be in either open or closed states with or without ATP bound are considered. Such models predict a pedestal in the ATP inhibition, i.e., a maximal amount of inhibition at saturating ATP concentrations. This pedestal is predicted to occur at >50 mM ATP in the L164C mutant, but at >1 mM in the double mutant L164C/R176A. As predicted, ATP inhibits Kir6.2[L164C/R176A] to a maximum of approximately 40%, with a clear plateau beyond 2 mM. These results indicate that ATP acts as an allosteric ligand, interacting with both open and closed states of the channel.

摘要

相似文献

1
ATP interaction with the open state of the K(ATP) channel.
Biophys J. 2001 Feb;80(2):719-28. doi: 10.1016/S0006-3495(01)76051-1.
2
The kinetic and physical basis of K(ATP) channel gating: toward a unified molecular understanding.
Biophys J. 2000 May;78(5):2334-48. doi: 10.1016/S0006-3495(00)76779-8.
3
Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
Neuroscience. 2008 Mar 18;152(2):371-80. doi: 10.1016/j.neuroscience.2008.01.003. Epub 2008 Jan 9.
4
Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1.
J Physiol. 2003 Apr 15;548(Pt 2):361-71. doi: 10.1113/jphysiol.2003.038844. Epub 2003 Mar 14.
5
6
Kir6.2-deficient mice are susceptible to stimulated ANP secretion: K(ATP) channel acts as a negative feedback mechanism?
Cardiovasc Res. 2005 Jul 1;67(1):60-8. doi: 10.1016/j.cardiores.2005.03.011. Epub 2005 Apr 20.
7
Flexibility of the Kir6.2 inward rectifier K(+) channel pore.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4227-32. doi: 10.1073/pnas.061452698. Epub 2001 Mar 6.
8
Regulation of the ATP-sensitive K channel Kir6.2 by ATP and PIP(2).
J Mol Cell Cardiol. 2005 Jul;39(1):71-7. doi: 10.1016/j.yjmcc.2004.11.018.
9
Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2.
J Physiol. 2003 Oct 1;552(Pt 1):23-34. doi: 10.1113/jphysiol.2003.048843. Epub 2003 Jul 14.
10
Gbetagamma binding increases the open time of IKACh: kinetic evidence for multiple Gbetagamma binding sites.
Biophys J. 1999 Jan;76(1 Pt 1):246-52. doi: 10.1016/S0006-3495(99)77193-6.

引用本文的文献

1
Rapid Characterization of the Functional and Pharmacological Consequences of Cantú Syndrome K Channel Mutations in Intact Cells.
J Pharmacol Exp Ther. 2023 Sep;386(3):298-309. doi: 10.1124/jpet.123.001659. Epub 2023 Aug 1.
2
The dynamic interplay of PIP and ATP in the regulation of the K channel.
J Physiol. 2022 Oct;600(20):4503-4519. doi: 10.1113/JP283345. Epub 2022 Sep 23.
3
Simulating PIP-Induced Gating Transitions in Kir6.2 Channels.
Front Mol Biosci. 2021 Aug 10;8:711975. doi: 10.3389/fmolb.2021.711975. eCollection 2021.
4
Calcium Oscillations in Pancreatic α-cells Rely on Noise and ATP-Driven Changes in Membrane Electrical Activity.
Front Physiol. 2020 Nov 17;11:602844. doi: 10.3389/fphys.2020.602844. eCollection 2020.
8
Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men.
Physiol Rev. 2018 Jan 1;98(1):117-214. doi: 10.1152/physrev.00008.2017.
9
Anti-diabetic drug binding site in a mammalian K channel revealed by Cryo-EM.
Elife. 2017 Oct 24;6:e31054. doi: 10.7554/eLife.31054.

本文引用的文献

1
ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL.
J Mol Biol. 1965 May;12:88-118. doi: 10.1016/s0022-2836(65)80285-6.
3
The kinetic and physical basis of K(ATP) channel gating: toward a unified molecular understanding.
Biophys J. 2000 May;78(5):2334-48. doi: 10.1016/S0006-3495(00)76779-8.
4
A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel.
Neuron. 2000 Feb;25(2):411-23. doi: 10.1016/s0896-6273(00)80904-6.
7
Structure and dynamics of the pore of inwardly rectifying K(ATP) channels.
J Biol Chem. 2000 Jan 14;275(2):1137-44. doi: 10.1074/jbc.275.2.1137.
9
Structural rearrangements underlying K+-channel activation gating.
Science. 1999 Jul 2;285(5424):73-8. doi: 10.1126/science.285.5424.73.
10
Transmembrane structure of an inwardly rectifying potassium channel.
Cell. 1999 Mar 19;96(6):879-91. doi: 10.1016/s0092-8674(00)80597-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验