Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, UK.
Department of Biochemistry, University of Oxford, Oxford, Oxfordshire, UK.
J Physiol. 2022 Oct;600(20):4503-4519. doi: 10.1113/JP283345. Epub 2022 Sep 23.
ATP-sensitive potassium (K ) channels couple the intracellular ATP concentration to insulin secretion. K channel activity is inhibited by ATP binding to the Kir6.2 tetramer and activated by phosphatidylinositol 4,5-bisphosphate (PIP ). Here, we use molecular dynamics simulation, electrophysiology and fluorescence spectroscopy to show that ATP and PIP occupy different binding pockets that share a single amino acid residue, K39. When both ligands are present, simulations suggest that K39 shows a greater preference to co-ordinate with PIP than with ATP. They also predict that a neonatal diabetes mutation at K39 (K39R) increases the number of hydrogen bonds formed between K39 and PIP , potentially accounting for the reduced ATP inhibition observed in electrophysiological experiments. Our work suggests that PIP and ATP interact allosterically to regulate K channel activity. KEY POINTS: The K channel is activated by the binding of phosphatidylinositol 4,5-bisphosphate (PIP ) lipids and inactivated by the binding of ATP. K39 has the potential to bind to both PIP and ATP. A mutation to this residue (K39R) results in neonatal diabetes. This study uses patch-clamp fluorometry, electrophysiology and molecular dynamics simulation. We show that PIP competes with ATP for K39, and this reduces channel inhibition by ATP. We show that K39R increases channel affinity to PIP by increasing the number of hydrogen bonds with PIP , when compared with the wild-type K39. This therefore decreases K channel inhibition by ATP.
三磷酸腺苷敏感性钾 (K ) 通道将细胞内的三磷酸腺苷浓度与胰岛素分泌偶联起来。K 通道的活性受三磷酸腺苷与 Kir6.2 四聚体结合的抑制,并受磷脂酰肌醇 4,5-二磷酸 (PIP ) 的激活。在这里,我们使用分子动力学模拟、电生理学和荧光光谱学表明,三磷酸腺苷和 PIP 占据不同的结合口袋,这些口袋共享一个单一的氨基酸残基 K39。当两种配体都存在时,模拟表明 K39 与 PIP 配位的偏好大于与三磷酸腺苷配位的偏好。它们还预测,K39 处的新生儿糖尿病突变 (K39R) 增加了 K39 与 PIP 之间形成的氢键数量,这可能解释了在电生理学实验中观察到的三磷酸腺苷抑制作用降低。我们的工作表明,PIP 和三磷酸腺苷通过变构相互作用来调节 K 通道的活性。
K 通道被磷脂酰肌醇 4,5-二磷酸 (PIP ) 脂质的结合激活,被三磷酸腺苷的结合失活。
K39 有可能与 PIP 和三磷酸腺苷结合。
该残基的突变(K39R)导致新生儿糖尿病。
本研究使用膜片钳荧光法、电生理学和分子动力学模拟。
我们表明 PIP 与三磷酸腺苷竞争 K39,这降低了三磷酸腺苷对通道的抑制作用。
与野生型 K39 相比,K39R 通过增加与 PIP 的氢键数量,增加了通道对 PIP 的亲和力,从而降低了 K 通道对三磷酸腺苷的抑制作用。