Suppr超能文献

蛋白质-核糖核酸相互作用:结构分析

Protein-RNA interactions: a structural analysis.

作者信息

Jones S, Daley D T, Luscombe N M, Berman H M, Thornton J M

机构信息

Biomolecular Structure and Modelling Unit, Department of Biochemistry and Molecular Biology, University College, Gower Street, London WC1E 6BT, UK.

出版信息

Nucleic Acids Res. 2001 Feb 15;29(4):943-54. doi: 10.1093/nar/29.4.943.

Abstract

A detailed computational analysis of 32 protein-RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein-double-stranded DNA and protein-single-stranded DNA complexes. The interface properties of the protein-RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein-RNA and protein-DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein-RNA complexes, backbone contacts were more dominant in the protein-DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level.

摘要

本文对32种蛋白质-RNA复合物进行了详细的计算分析。计算了分子间界面的一些物理和化学性质,并与蛋白质-双链DNA和蛋白质-单链DNA复合物中的性质进行了比较。蛋白质-RNA复合物的界面性质揭示了结合位点的多样性。范德华接触比氢键接触发挥了更普遍的作用,并且观察到对鸟嘌呤和尿嘧啶的优先结合。带正电荷的残基精氨酸以及单个芳香族残基苯丙氨酸和酪氨酸在RNA结合位点中均发挥了关键作用。蛋白质-RNA和蛋白质-DNA复合物之间的比较表明,虽然在蛋白质-RNA复合物中碱基和骨架接触(氢键和范德华接触)出现的频率相同,但在蛋白质-DNA复合物中骨架接触更为占主导地位。尽管在RNA和DNA结合蛋白中观察到了相似的二级结构相互作用模式,但当前分析强调了这两种核酸结合蛋白在原子接触水平上存在的差异。

相似文献

1
Protein-RNA interactions: a structural analysis.
Nucleic Acids Res. 2001 Feb 15;29(4):943-54. doi: 10.1093/nar/29.4.943.
2
Structure-based analysis of protein-RNA interactions using the program ENTANGLE.
J Mol Biol. 2001 Aug 3;311(1):75-86. doi: 10.1006/jmbi.2001.4857.
3
Protein-RNA interactions: structural analysis and functional classes.
Proteins. 2007 Mar 1;66(4):903-11. doi: 10.1002/prot.21211.
4
Statistical analysis of atomic contacts at RNA-protein interfaces.
J Mol Recognit. 2001 Jul-Aug;14(4):199-214. doi: 10.1002/jmr.534.
5
Molecular architecture of protein-RNA recognition sites.
J Biomol Struct Dyn. 2015;33(12):2738-51. doi: 10.1080/07391102.2015.1004652. Epub 2015 Feb 11.
8
Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures.
Bioinformatics. 2006 Nov 15;22(22):2746-52. doi: 10.1093/bioinformatics/btl470. Epub 2006 Sep 11.
9
DBBP: database of binding pairs in protein-nucleic acid interactions.
BMC Bioinformatics. 2014;15 Suppl 15(Suppl 15):S5. doi: 10.1186/1471-2105-15-S15-S5. Epub 2014 Dec 3.
10
Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level.
Nucleic Acids Res. 2001 Jul 1;29(13):2860-74. doi: 10.1093/nar/29.13.2860.

引用本文的文献

1
SELEX identifies high-affinity RNA targets for chromatin-binding proteins PARP1 and MeCP2.
iScience. 2025 Aug 6;28(9):113299. doi: 10.1016/j.isci.2025.113299. eCollection 2025 Sep 19.
2
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
4
The role of water in mediating DNA structures with epigenetic modifications, higher-order conformations and drug-DNA interactions.
RSC Chem Biol. 2025 Mar 14;6(5):699-720. doi: 10.1039/d4cb00308j. eCollection 2025 May 8.
5
Mechanism of non-coding RNA regulation of DNMT3A.
Epigenetics Chromatin. 2025 Mar 28;18(1):15. doi: 10.1186/s13072-025-00574-w.
6
RNAproDB: A Webserver and Interactive Database for Analyzing Protein-RNA Interactions.
J Mol Biol. 2025 Feb 15:169012. doi: 10.1016/j.jmb.2025.169012.
7
Decoding the effects of mutation on protein interactions using machine learning.
Biophys Rev (Melville). 2025 Feb 21;6(1):011307. doi: 10.1063/5.0249920. eCollection 2025 Mar.
10
Structural comparison of homologous protein-RNA interfaces reveals widespread overall conservation contrasted with versatility in polar contacts.
PLoS Comput Biol. 2024 Dec 3;20(12):e1012650. doi: 10.1371/journal.pcbi.1012650. eCollection 2024 Dec.

本文引用的文献

1
An overview of the structures of protein-DNA complexes.
Genome Biol. 2000;1(1):REVIEWS001. doi: 10.1186/gb-2000-1-1-reviews001. Epub 2000 Jun 9.
2
Induced fit in RNA-protein recognition.
Nat Struct Biol. 2000 Oct;7(10):834-7. doi: 10.1038/79575.
3
Structure of the 30S ribosomal subunit.
Nature. 2000 Sep 21;407(6802):327-39. doi: 10.1038/35030006.
4
Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution.
Cell. 2000 Sep 1;102(5):615-23. doi: 10.1016/s0092-8674(00)00084-2.
5
Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain.
Science. 2000 Apr 7;288(5463):107-13. doi: 10.1126/science.288.5463.107.
6
The Protein Data Bank.
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.
7
Themes in RNA-protein recognition.
J Mol Biol. 1999 Oct 22;293(2):255-70. doi: 10.1006/jmbi.1999.2991.
8
RNA-protein complexes.
Curr Opin Struct Biol. 1999 Feb;9(1):66-73. doi: 10.1016/s0959-440x(99)80009-8.
9
A detailed view of a ribosomal active site: the structure of the L11-RNA complex.
Cell. 1999 May 14;97(4):491-502. doi: 10.1016/s0092-8674(00)80759-x.
10
Protein-RNA recognition.
Biopolymers. 1998;48(2-3):181-95. doi: 10.1002/(SICI)1097-0282(1998)48:2<181::AID-BIP7>3.0.CO;2-L.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验