Su T T, Jaklevic B
MCD Biology, University of Colorado, Boulder, CO 80309, USA.
Curr Biol. 2001 Jan 9;11(1):8-17. doi: 10.1016/s0960-9822(00)00042-7.
In response to DNA damage, fission yeast, mammalian cells, and cells of the Drosophila gastrula inhibit Cdk1 to delay the entry into mitosis. In contrast, budding yeast delays metaphase-anaphase transition by stabilization of an anaphase inhibitor, Pds1p. A variation of the second response is seen in Drosophila cleavage embryos; when nuclei enter mitosis with damaged DNA, centrosomes lose gamma-tubulin, spindles lose astral microtubules, chromosomes fail to reach a metaphase configuration, and interphase resumes without an intervening anaphase. The resulting polyploid nuclei are eliminated.
The cells of the Drosophila gastrula can also delay metaphase-anaphase transition in response to DNA damage. This delay accompanies the stabilization of Cyclin A, a known inhibitor of sister chromosome separation in Drosophila. Unlike in cleavage embryos, gamma-tubulin remains at the spindle poles, and anaphase always occurs after the delay. Cyclin A mutants fail to delay metaphase-anaphase transition after irradiation and show an increased frequency of chromosome breakage in the subsequent anaphase.
DNA damage delays metaphase-anaphase transition in Drosophila by stabilizing Cyclin A. This delay may normally serve to preserve chromosomal integrity during segregation. To our knowledge this is the first report of a metazoan metaphase-anaphase transition being delayed in response to DNA damage. Though mitotic progression is modulated in response to DNA damage in both cleaving and gastruating embryos of Drosophila, different mechanisms operate. These differences are discussed in the context of differential cell cycle regulation in cleavage and gastrula stages.
作为对DNA损伤的反应,裂殖酵母、哺乳动物细胞以及果蝇原肠胚细胞会抑制Cdk1以延迟进入有丝分裂。相比之下,芽殖酵母通过稳定后期抑制因子Pds1p来延迟中期到后期的转变。在果蝇卵裂胚胎中可以看到第二种反应的一种变体;当细胞核带着受损DNA进入有丝分裂时,中心体失去γ-微管蛋白,纺锤体失去星体微管,染色体无法达到中期构型,并且在没有中间后期的情况下恢复间期。产生的多倍体细胞核会被消除。
果蝇原肠胚细胞也能对DNA损伤做出反应,延迟中期到后期的转变。这种延迟伴随着周期蛋白A的稳定,周期蛋白A是果蝇中已知的姐妹染色单体分离抑制剂。与卵裂胚胎不同,γ-微管蛋白仍留在纺锤体极,并且后期总是在延迟后发生。周期蛋白A突变体在辐射后无法延迟中期到后期的转变,并且在随后的后期显示出染色体断裂频率增加。
DNA损伤通过稳定周期蛋白A来延迟果蝇的中期到后期转变。这种延迟可能通常用于在染色体分离过程中保持染色体完整性。据我们所知,这是后生动物中期到后期转变因DNA损伤而延迟的首次报道。虽然果蝇的卵裂胚胎和原肠胚胚胎在有丝分裂进程中都会对DNA损伤做出调节,但作用机制不同。这些差异在卵裂期和原肠胚期不同的细胞周期调控背景下进行了讨论。