Suppr超能文献

蛋白质的构象空间

Conformation spaces of proteins.

作者信息

Sullivan D C, Kuntz I D

机构信息

Department of Pharmaceutical Chemistry, University of California at San Francisco, 94143-0446, USA.

出版信息

Proteins. 2001 Mar 1;42(4):495-511.

Abstract

We report a simple method for measuring the accessible conformational space explored by an ensemble of protein structures. The method is useful for diverse ensembles derived from molecular dynamics trajectories, molecular modeling, and molecular structure determinations. It can be used to examine a wide range of time scales. The central tactic we use, which has been previously employed, is to replace the true mechanical degrees of freedom of a molecular system with the conformationally effective degrees of freedom as measured by the root-mean squared cartesian distances among all pairs of conformations. Each protein conformation is treated as a point in a high dimensional euclidean space. In this article, we model this space in a novel way by representing it as an N-dimensional hypercube, describable with only two parameters: the number of dimensions and the edge length. To validate this approach, we provide a number of elementary test cases and then use the N-cube method for measuring the size and shape of conformational space covered by molecular dynamics trajectories spanning 10 orders of magnitude in time. These calculations were performed on a small protein, the villin headpiece subdomain, exploring both the native state and the misfolded/folding regime. Distinct features include single, vibrationally averaged, substate minima on the 0.1-1-ps time scale, thermally averaged conformational states that persist for 1-100 ps and transitions between these local minima on nanosecond time scales. Large-scale refolding modes appear to become uncorrelated on the microsecond time scale. Associated length scales for these events are 0.2 A for the vibrational minima; 0.5 A for the conformational minima; and 1-2 A for the nanosecond events. We find that the conformational space that is dynamically accessible during folding of villin has enough volume for approximately 10(9) minima of the variety that persist for picoseconds. Molecular dynamics trajectories of the native protein and experimentally derived solution ensembles suggest the native state to be composed of approximately 10(2) of these thermally accessible minima. Thus, based on random exploration of accessible folding space alone, protein folding for a small protein is predicted to be a milliseconds time scale event. This time can be compared with the experimental folding time for villin of 10-100 micros. One possible explanation for the 10-100-fold discrepancy is that the slope of the "folding funnel" increases the rate 1-2 orders of magnitude above random exploration of substates.

摘要

我们报告了一种测量蛋白质结构集合所探索的可及构象空间的简单方法。该方法适用于源自分子动力学轨迹、分子建模和分子结构测定的各种集合。它可用于考察广泛的时间尺度。我们采用的核心策略(此前已有人使用)是,用通过所有构象对之间的笛卡尔坐标均方根距离测量的构象有效自由度,取代分子系统的真实机械自由度。每个蛋白质构象都被视为高维欧几里得空间中的一个点。在本文中,我们以一种新颖的方式对这个空间进行建模,将其表示为一个N维超立方体,仅用两个参数即可描述:维度数和边长。为验证此方法,我们提供了一些基本测试案例,然后使用N立方体方法测量跨越10个数量级时间的分子动力学轨迹所覆盖的构象空间的大小和形状。这些计算是在一个小蛋白质——绒毛蛋白头部结构域上进行的,考察了天然状态以及错误折叠/折叠状态。显著特征包括在0.1 - 1皮秒时间尺度上的单个、振动平均的亚态最小值,持续1 - 100皮秒的热平均构象状态,以及在纳秒时间尺度上这些局部最小值之间的转变。大规模重折叠模式在微秒时间尺度上似乎变得不相关。这些事件的相关长度尺度分别为:振动最小值为0.2埃;构象最小值为0.5埃;纳秒事件为1 - 2埃。我们发现,绒毛蛋白折叠过程中动态可及的构象空间有足够的体积容纳大约10⁹个持续皮秒的各类最小值。天然蛋白质的分子动力学轨迹和实验得出的溶液集合表明,天然状态由大约10²个这些热可及最小值组成。因此,仅基于对可及折叠空间的随机探索,预测一个小蛋白质的蛋白质折叠是一个毫秒时间尺度的事件。这个时间可与绒毛蛋白的实验折叠时间10 - 100微秒进行比较。对于10 - 100倍的差异,一种可能的解释是“折叠漏斗”的斜率使速率比亚态的随机探索高出1 - 2个数量级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验