Khanna P, Schuman Jorns M
Department of Biochemistry, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA.
Biochemistry. 2001 Feb 6;40(5):1451-9. doi: 10.1021/bi002442t.
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of N-methyl-L-tryptophan (k(cat) = 4600 min(-1)). Other secondary amino acids (e.g., sarcosine) are oxidized at a slower rate. We have identified carbinolamines as a new class of alternate substrate. MTOX oxidation of the carbinolamine formed with L-tryptophan and formaldehyde yields N-formyl-L-tryptophan in a relatively slow reaction that does not compete with turnover of MTOX with N-methyl-L-tryptophan. Double reciprocal plots with N-methyl-L-tryptophan as the varied substrate are nearly parallel, but the slopes show a small, systematic variation depending on the oxygen concentration. N-Benzylglycine, a dead-end competitive inhibitor with respect to N-methyl-L-tryptophan, acts as a noncompetitive inhibitor with respect to oxygen. The results are consistent with a modified ping pong mechanism where oxygen binds to the reduced enzyme prior to dissociation of the imino acid product. MTOX is converted to a 2-electron reduced form upon anaerobic reaction with N-methyl-L-tryptophan, sarcosine, or the carbinolamine formed with L-tryptophan and formaldehyde. No evidence for a detectable intermediate was obtained by monitoring the spectral course of the latter two reactions. MTOX reduction with thioglycolate does, however, proceed via a readily detectable anionic, flavin radical intermediate. The reductive half-reaction with sarcosine at 4 degrees C exhibits saturation kinetics (k(lim) = 6.8 min(-1), K = 39 mM) and other features consistent with a mechanism in which a nearly irreversible reduction step (E(ox).S --> E(red).P) (k(lim)) is preceded by a rapidly attained equilibrium (K) between free E and the E.S complex. The 21 degrees C temperature difference can reasonably account for the 3.6-fold lower value obtained for k(lim) as compared with turnover at 25 degrees C (k(cat) = 24.5 min(-1)), suggesting that sarcosine is oxidized at a kinetically significant rate under anaerobic conditions and the reductive half-reaction is rate-limiting during turnover. These conclusions are, however, difficult to reconcile with steady-state kinetic patterns obtained with sarcosine that are consistent with a rapid equilibrium ordered mechanism with oxygen as the first substrate. The basis for the apparent stability of the MTOX.oxygen complex (K(d) = 72 microM) is unknown.
N-甲基色氨酸氧化酶(MTOX)是一种来自大肠杆菌的黄素酶,催化N-甲基-L-色氨酸的氧化脱甲基反应(催化常数k(cat)=4600 min⁻¹)。其他仲氨基酸(如肌氨酸)的氧化速率则较慢。我们已确定甲醇胺是一类新的替代底物。MTOX对由L-色氨酸和甲醛形成的甲醇胺进行氧化反应,生成N-甲酰基-L-色氨酸,该反应相对较慢,且不与MTOX催化N-甲基-L-色氨酸的周转反应相竞争。以N-甲基-L-色氨酸作为变化底物的双倒数作图几乎平行,但斜率随氧浓度呈现出微小的系统性变化。N-苄基甘氨酸,作为N-甲基-L-色氨酸的终产物竞争性抑制剂,对氧而言则是一种非竞争性抑制剂。这些结果与一种修正的乒乓机制相符,即氧在亚氨基酸产物解离之前与还原态酶结合。在与N-甲基-L-色氨酸、肌氨酸或由L-色氨酸和甲醛形成的甲醇胺进行厌氧反应时,MTOX会转化为二电子还原形式。通过监测后两个反应的光谱过程,未获得可检测中间产物的证据。然而,用巯基乙酸对MTOX进行还原反应时,确实会经过一个易于检测的阴离子黄素自由基中间产物。在4℃下与肌氨酸进行的还原半反应呈现出饱和动力学(极限速率k(lim)=6.8 min⁻¹,米氏常数K=39 mM)以及其他特征,这与一种机制相符,即在一个几乎不可逆的还原步骤(氧化态酶-底物复合物E(ox).S→还原态酶-产物复合物E(red).P)(k(lim))之前,游离酶E与酶-底物复合物E.S之间存在一个快速达到的平衡(K)。21℃的温度差能够合理地解释与25℃下的周转反应(催化常数k(cat)=24.5 min⁻¹)相比,k(lim)值降低了3.6倍的现象,这表明在厌氧条件下肌氨酸以具有动力学意义的速率被氧化,且还原半反应在周转过程中是限速步骤。然而,这些结论难以与用肌氨酸得到的稳态动力学模式相协调,后者与以氧作为第一个底物的快速平衡有序机制相符。MTOX-氧复合物的表观稳定性(解离常数K(d)=72 μM)的基础尚不清楚。