Jung H T, Coldren B, Zasadzinski J A, Iampietro D J, Kaler E W
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA.
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1353-7. doi: 10.1073/pnas.98.4.1353. Epub 2001 Jan 30.
Equilibrium unilamellar vesicles are stabilized by one of two distinct mechanisms depending on the value of the bending constant. Helfrich undulations ensure that the interbilayer potential is always repulsive when the bending constant, K, is of order k(B)T. When K k(B)T, unilamellar vesicles are stabilized by the spontaneous curvature that picks out a particular vesicle radius; other radii are disfavored energetically. We present measurements of the bilayer elastic constant and the spontaneous curvature, R(o), for three different systems of equilibrium vesicles by an analysis of the vesicle size distribution determined by cryo-transmission electron microscopy and small-angle neutron scattering. For cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate catanionic vesicles, K =.7 k(B)T, suggesting that the unilamellar vesicles are stabilized by Helfrich-undulation repulsions. However, for CTAB and sodium perfluorooctanoate (FC(7)) vesicles, K = 6 k(B)T, suggesting stabilization by the energetic costs of deviations from the spontaneous curvature. Adding electrolyte to the sodium perfluorooctanoate/CTAB vesicles leads to vesicles with two bilayers; the attractive interactions between the bilayers can overcome the cost of small deviations from the spontaneous curvature to form two-layer vesicles, but larger deviations to form three and more layer vesicles are prohibited. Vesicles with a discrete numbers of bilayers at equilibrium are possible only for bilayers with a large bending modulus coupled with a spontaneous curvature.
平衡单层囊泡通过两种不同机制之一得以稳定,这取决于弯曲常数的值。当弯曲常数(K)为(k(B)T)量级时,赫尔弗里希波动确保双层间势能始终为排斥力。当(K\gt k(B)T)时,单层囊泡通过选择特定囊泡半径的自发曲率得以稳定;其他半径在能量上是不利的。我们通过分析由低温透射电子显微镜和小角中子散射确定的囊泡尺寸分布,给出了三种不同平衡囊泡系统的双层弹性常数和自发曲率(R(o))的测量结果。对于十六烷基三甲基溴化铵(CTAB)/辛基磺酸钠阴阳离子囊泡,(K = 0.7k(B)T),这表明单层囊泡是由赫尔弗里希波动排斥力稳定的。然而,对于CTAB和全氟辛酸钠(FC(7))囊泡,(K = 6k(B)T),这表明是由偏离自发曲率的能量成本实现稳定的。向全氟辛酸钠/CTAB囊泡中添加电解质会导致形成具有两个双层的囊泡;双层之间的吸引相互作用可以克服偏离自发曲率的小成本以形成双层囊泡,但形成三层及更多层囊泡的较大偏差是被禁止的。仅对于具有大弯曲模量和自发曲率的双层,在平衡时具有离散双层数的囊泡才是可能的。