Suppr超能文献

The role of fluorescence in situ hybridization technologies in molecular diagnostics and disease management.

作者信息

King W, Proffitt J, Morrison L, Piper J, Lane D, Seelig S

机构信息

Vysis, Inc, 3199 Woodcreek Dr., Downers Grove, IL 60515, USA.

出版信息

Mol Diagn. 2000 Dec;5(4):309-19. doi: 10.1007/BF03262092.

Abstract

Large genomic changes, such as aneuploidy, deletions, and other chromosomal rearrangements, have long been associated with pregnancy loss, congenital abnormalities, and malignancy. These genomic changes are quantitative, unambiguous, and fundamental in the transition of normal cells to abnormal ones. Detection of these large genetic changes has an increasingly important role in determining patient diagnosis and care, including therapeutic selection. We have developed two major product platforms that assess genomic changes at various levels of resolution. Fluorescence in situ hybridization (FISH) techniques and the related technology of array-based comparative genomic hybridization (CGH) allow detection of genesized or larger alterations in the genome. FISH is a robust DNA probe technology that can measure both balanced and unbalanced genomic changes on a cell-by-cell basis. In most instances, it is not dependent on metaphase chromosomes, and it is widely used in clinical diagnostics. Array-based CGH has much greater multiplexing capabilities than FISH. This technology has the potential to examine many regions of the genome simultaneously for changes in DNA copy number and identify complex patterns of gains and losses within the genome. In this article, we review several of the current medical applications of FISH and discuss such advanced techniques as CGH and array-based CGH.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验