Suppr超能文献

染色体领地、染色质间结构域隔室与核基质:功能性核结构的综合视角

Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.

作者信息

Cremer T, Kreth G, Koester H, Fink R H, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C

机构信息

Institute of Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany.

出版信息

Crit Rev Eukaryot Gene Expr. 2000;10(2):179-212.

Abstract

Advances in the specific fluorescent labeling of chromatin in fixed and living human cells in combination with three-dimensional (3D) and 4D (space plus time) fluorescence microscopy and image analysis have opened the way for detailed studies of the dynamic, higher-order architecture of chromatin in the human cell nucleus and its potential role in gene regulation. Several features of this architecture are now well established: 1. Chromosomes occupy distinct territories in the cell nucleus with preferred nuclear locations, although there is no evidence of a rigid suprachromosomal order. 2. Chromosome territories (CTs) in turn contain distinct chromosome arm domains and smaller chromatin foci or domains with diameters of some 300 to 800 nm and a DNA content in the order of 1 Mbp. 3. Gene-dense, early-replicating and gene-poor, middle-to-late-replicating chromatin domains exhibit different higher-order nuclear patterns that persist through all stages of interphase. In mitotic chromosomes early replicating chromatin domains give rise to Giemsa light bands, whereas middle-to-late-replicating domains form Giemsa dark bands and C-bands. In an attempt to integrate these experimental data into a unified view of the functional nuclear architecture, we present a model of a modular and dynamic chromosome territory (CT) organization. We propose that basically three nuclear compartments exist, an "open" higher-order chromatin compartment with chromatin domains containing active genes, a "closed" chromatin compartment comprising inactive genes, and an interchromatin domain (ICD) compartment (Cremer et al., 1993; Zirbel et al., 1993) that contains macromolecular complexes for transcription, splicing, DNA replication, and repair. Genes in "open," but not in "closed" higher-order chromatin compartments have access to transcription and splicing complexes located in the ICD compartment. Chromatin domains that build the "open" chromatin compartment are organized in a way that allows the direct contact of genes and nascent RNA to transcription and splicing complexes, respectively, preformed in the ICD compartment. In contrast, chromatin domains that belong to the "closed" compartment are topologically arranged and compacted in a way that precludes the accessibility of genes to transcription complexes. We argue that the content of the ICD compartment is highly enriched in DNA depleted biochemical matrix preparations. The ICD compartment may be considered as the structural and functional equivalent of the in vivo nuclear matrix. A matrix in this functional sense is compatible with but does not necessitate the concept of a 3D nuclear skeleton existing of long, extensively arborized filaments. In the absence of unequivocal evidence for such a structural matrix in the nucleus of living cells we keep an agnostic attitude about its existence and possible properties in maintaining the higher-order nuclear architecture. Quantitative modeling of the 3D and 4D human genome architecture in situ shows that such an assumption is not necessary to explain presently known aspects of the higher-order nuclear architecture. We expect that the interplay of quantitative modeling and experimental tests will result in a better understanding of the compartmentalized nuclear architecture and its functional consequences.

摘要

固定和活的人类细胞中染色质特异性荧光标记技术的进展,与三维(3D)和四维(空间加时间)荧光显微镜及图像分析相结合,为详细研究人类细胞核中染色质的动态高阶结构及其在基因调控中的潜在作用开辟了道路。这种结构的几个特征现已得到充分证实:1. 染色体在细胞核中占据不同的区域,具有偏好的核位置,尽管没有证据表明存在严格的超染色体秩序。2. 染色体区域(CTs)又包含不同的染色体臂结构域以及直径约为300至800纳米、DNA含量约为1兆碱基对的较小染色质焦点或结构域。3. 基因密集、早期复制的染色质结构域和基因稀少、中期至后期复制的染色质结构域呈现出不同的高阶核模式,这些模式在整个间期阶段都持续存在。在有丝分裂染色体中,早期复制的染色质结构域形成吉姆萨浅带,而中期至后期复制的结构域形成吉姆萨深带和C带。为了将这些实验数据整合到功能核结构的统一视图中,我们提出了一个模块化和动态染色体区域(CT)组织的模型。我们认为基本上存在三个核区室,一个“开放”的高阶染色质区室,其中的染色质结构域包含活跃基因;一个“封闭”的染色质区室,包含不活跃基因;以及一个染色质间结构域(ICD)区室(克雷默等人,1993年;齐尔贝尔等人,1993年),其中含有用于转录、剪接、DNA复制和修复的大分子复合物。“开放”但非“封闭”的高阶染色质区室中的基因可以接触到位于ICD区室中的转录和剪接复合物。构建“开放”染色质区室的染色质结构域的组织方式使得基因和新生RNA能够分别直接接触在ICD区室中预先形成的转录和剪接复合物。相反,属于“封闭”区室的染色质结构域在拓扑上排列并压缩,使得基因无法接触转录复合物。我们认为ICD区室的内容物在DNA耗尽的生化基质制剂中高度富集。ICD区室可以被视为体内核基质的结构和功能等同物。从这个功能意义上讲,基质与存在由长而广泛分支的细丝组成的三维核骨架的概念兼容,但并非必需。在没有明确证据证明活细胞的细胞核中存在这种结构基质的情况下,我们对其在维持高阶核结构中的存在和可能特性持不可知论态度。对原位三维和四维人类基因组结构的定量建模表明,这种假设对于解释目前已知的高阶核结构方面并非必要。我们期望定量建模和实验测试的相互作用将导致对分区核结构及其功能后果有更好的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验