Biozentrum, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
Exp Cell Res. 2010 Jun 10;316(10):1662-80. doi: 10.1016/j.yexcr.2010.03.008. Epub 2010 Mar 17.
Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA. Cell viability is maintained irrespective of this peculiar chromatin phenotype. Cell cycle markers, histone signatures, and tests for cellular senescence and for oxidative stress indicate that chaetocin induced chromatin condensation/clustering (CICC) represents a distinct entity among nuclear phenotypes associated with condensed chromatin. The territorial organization of entire chromosomes is maintained in CICC nuclei; however, the conventional nuclear architecture harboring gene-dense chromatin in the nuclear interior and gene-poor chromatin at the nuclear periphery is lost. Instead gene-dense and transcriptionally active chromatin is shifted to the periphery of individual condensed chromosome territories where nascent RNA becomes highly enriched around their outer surface. This chromatin reorganization makes CICC nuclei an attractive model system to study this border zone as a distinct compartment for transcription. Induction of CICC is fully inhibited by thiol-dependent antioxidants, but is not related to the production of reactive oxygen species. Our results suggest that chaetocin functionally impairs the thioredoxin (Trx) system, which is essential for deoxynucleotide synthesis, but in addition involved in a wide range of cellular functions. The mechanisms involved in CICC formation remain to be fully explored.
在前期、终末细胞分化和细胞衰老过程中,可以观察到高级染色质结构的广泛变化。在明确条件下可以诱导核结构主要重组的实验系统,可能有助于更好地理解这些变化的功能意义。在这里,我们报告了在纤维母细胞核中,通过 chaetocin(硫二氧代哌嗪代谢物)引起的深刻染色质重排。Chaetocin 诱导染色体区室的强烈凝聚,这些区室通过广泛的染色质间隔空间彼此分离,该空间主要缺乏 DNA。尽管存在这种特殊的染色质表型,但细胞活力仍得以维持。细胞周期标志物、组蛋白特征以及细胞衰老和氧化应激测试表明,chaetocin 诱导的染色质凝聚/聚类(CICC)是与浓缩染色质相关的核表型中的一种独特实体。整个染色体的区域组织在 CICC 核中得以维持;然而,失去了传统的核结构,该结构将基因密集的染色质置于核内部,而将基因稀少的染色质置于核边缘。相反,基因密集且转录活跃的染色质被转移到单个凝聚染色体区室的边缘,新生 RNA 在其外表面周围高度富集。这种染色质重排使得 CICC 核成为研究该边界区作为转录的独特隔室的有吸引力的模型系统。CICC 的诱导完全被硫醇依赖性抗氧化剂抑制,但与活性氧的产生无关。我们的结果表明,chaetocin 功能性地破坏了硫氧还蛋白(Trx)系统,该系统对于脱氧核苷酸合成是必需的,但此外还涉及广泛的细胞功能。CICC 形成的机制仍有待充分探索。