Boelrijk A E, Dismukes G C
Department of Chemistry, Henry H. Hoyt Laboratory, Princeton University, Princeton, New Jersey 08540, USA.
Inorg Chem. 2000 Jul 10;39(14):3020-8. doi: 10.1021/ic9911771.
Several modifications of the manganese coordination environment and oxidation states of a family of synthetic dimanganese complexes have been introduced in search of the structural features that promote high rates of hydrogen peroxide dismutation (catalase activity). The X-ray structure of reduced catalase (T thermophilus) reveals a dimanganese(II,II) site linked by three bridges: mu 13-glutamate-, mu-OH-, and mu-OH2. The roles of a bridging hydroxide vs mu-aqua and the carboxylate have been examined in the reduced Mn2(II,II) complexes, [(L1,2)Mn2(mu-O2CCH3)(mu-X)]2+ for X- = OH- (7A) or X = H2O (1-4), and their oxidized Mn2(III,III) analogues, [(L1,2)Mn2(mu-O)(O2CCH3)(OH)]+ (6) (L1 is N,N,N',N'-tetrakis(2-methylenebenzamidazolyl)-1,3-diaminopropan- 2-ol, and L2 is the tetrakis-N-ethylated analogue of L1, which has all amine protons replaced by ethyl groups). The steady-state catalase rate is first-order in concentration of both substrate and reduced catalyst and saturates at high peroxide concentrations in all cases, confirming peroxide/catalyst complex formation. No catalyst decomposition is seen after > 2000 turnovers. Catalysis proceeds via a ping-pong mechanism between the Mn2(II,II/III,III) redox states, involving complexes 6 and 7A/7A'. The Mn2(III,IV) oxidation state was not active in catalase activity. Replacement of the mu-aqua bridge by mu-hydroxide eliminates a kinetic lag phase in production of the O2 product, increases the affinity for substrate peroxide in the rate-limiting step as seen by a 5-fold. decrease in the Michaelis constant (KM), and accelerates the maximum rate (kcat) by 65-fold The kinetic and spectroscopic data are consistent with substrate deprotonation by the hydroxide bridge, yielding a hydroperoxyl bridge coordinated between the Mn ions (mu, eta 2 geometry, "end-on") as the basis for catalysis: mu-OH- + H2O2-->mu-O2H- + H2O. Binding of a second hydroxide ion to 7A causes a further increase in kcat by 4-fold with no further change in substrate affinity (KM). By contrast, free (noncoordinating) bases in solution have no effect on catalysis, thus establishing intramolecular sites for both functional hydroxide anions. Solution structural studies indicate that the presence of 2-5 equiv of hydroxide in solution leads to formation of a bishydroxide species, [(L1,2)Mn2(mu 13-O2CCH3)(OH)2], which in the presence of air or oxygen auto-oxidizes to yield complex 6, a Mn2(III,III)(mu-O) species. Complex 6 oxidizes H2O2 to O2 without a kinetic lag phase and is implicated as the active form of the oxidized catalyst. A maximum increase by 240-fold in catalytic efficiency (kcat/KM = 700 s-1 M-1) is observed with the bishydroxide species versus the aquo complex 1, or only 800-fold less efficient than the enzyme. Deprotonation of the amine groups of the chelate ligand L was shown not to be involved in the hydroxide effects because identical results were obtained using the catalyst with tetrakis(N-ethylated)-L. Uncoupling of the Mn(II) spins by protonation of the alkoxyl bridge (LH) was observed to lower the catalase activity. Comparisons to other dimanganese complexes reveals that the Mn2(II,II)/Mn2(III,III) redox potential is not the determining factor in the catalase rate of these complexes. Rather, rate acceleration correlates with the availability of an intramolecular hydroxide for substrate deprotonation and with binding of the substrate at the bridging site between Mn ions in the reductive O-O bond cleavage step that forms water and complex 6.
为了寻找能够促进高过氧化氢歧化速率(过氧化氢酶活性)的结构特征,人们对一类合成二锰配合物的锰配位环境和氧化态进行了多种修饰。还原型过氧化氢酶(嗜热栖热菌)的X射线结构揭示了一个由三个桥连接的二锰(II,II)位点:μ13 - 谷氨酸 -、μ - OH - 和μ - OH₂。在还原态的Mn₂(II,II)配合物[(L1,2)Mn₂(μ - O₂CCH₃)(μ - X)]²⁺(X⁻ = OH⁻ (7A) 或X = H₂O (1 - 4))及其氧化态的Mn₂(III,III)类似物[(L1,2)Mn₂(μ - O)(O₂CCH₃)(OH)]⁺ (6)中,研究了桥连氢氧化物与μ - 水和羧酸盐的作用(L1是N,N,N',N'-四(2 - 亚甲基苯并咪唑基)-1,3 - 二氨基丙 - 2 - 醇,L2是L1的四 - N - 乙基化类似物,其所有胺质子都被乙基取代)。稳态过氧化氢酶速率在底物和还原型催化剂浓度上均为一级反应,并且在所有情况下,在高过氧化物浓度时达到饱和,这证实了过氧化物/催化剂复合物的形成。在超过2000次周转后未观察到催化剂分解。催化作用通过Mn₂(II,II/III,III)氧化还原态之间的乒乓机制进行,涉及配合物6和7A/7A'。Mn₂(III,IV)氧化态在过氧化氢酶活性中不具有活性。用μ - 氢氧化物取代μ - 水桥消除了O₂产物生成中的动力学滞后阶段,在限速步骤中使底物过氧化物的亲和力增加了5倍,这可通过米氏常数(KM)降低5倍看出,并使最大反应速率(kcat)加快了65倍。动力学和光谱数据与氢氧化物桥使底物去质子化一致,产生一个在锰离子之间配位的氢过氧基桥(μ, η²几何结构,“端对端”)作为催化的基础:μ - OH⁻ + H₂O₂ --> μ - O₂H⁻ + H₂O。第二个氢氧根离子与7A结合使kcat进一步增加4倍,而底物亲和力(KM)没有进一步变化。相比之下,溶液中的游离(非配位)碱对催化作用没有影响,从而确定了两个功能性氢氧根阴离子的分子内位点。溶液结构研究表明,溶液中存在2 - 5当量的氢氧化物会导致形成双氢氧化物物种[(L1,2)Mn₂(μ13 - O₂CCH₃)(OH)₂],其在空气或氧气存在下自动氧化生成配合物6,即Mn₂(III,III)(μ - O)物种。配合物6将H₂O₂氧化为O₂没有动力学滞后阶段,并且被认为是氧化型催化剂的活性形式。与水合配合物1相比,双氢氧化物物种的催化效率(kcat/KM = 700 s⁻¹ M⁻¹)最大增加了240倍,或者仅比酶低800倍。螯合配体L的胺基去质子化不参与氢氧化物效应,因为使用四 -(N - 乙基化)- L的催化剂获得了相同的结果。观察到通过烷氧基桥(LH)质子化使Mn(II)自旋解耦会降低过氧化氢酶活性。与其他二锰配合物的比较表明,Mn₂(II,II)/Mn₂(III,III)氧化还原电位不是这些配合物过氧化氢酶速率的决定因素。相反,速率加速与分子内氢氧化物用于底物去质子化的可用性以及在形成水和配合物6的还原O - O键断裂步骤中底物在锰离子之间的桥连位点处的结合有关。