Suppr超能文献

Electric field-induced mobilisation of multiphase solution systems based on the nitration of benzene in a micro reactor.

作者信息

Doku G N, Haswell S J, McCreedy T, Greenway G M

机构信息

Department of Chemistry, University of Hull, Hull, UK HU6 7RX.

出版信息

Analyst. 2001 Jan;126(1):14-20. doi: 10.1039/b007585j.

Abstract

This paper describes the electric field-induced flow characteristics of multiphase solutions in a micro reactor device using the nitration of benzene as a model process. Photolithographic and wet etching techniques were used to fabricate the micro reactor (channels, 200 microns id, 100 microns deep) in a borosilicate glass substrate. The results focus specifically on the flow parameters of reagents/reactants (i.e., voltage, solution concentration and pH ranges and current-voltage relationships) used in this study. The benzene was introduced and mobilised by electroosmotic flow (EOF), as a microemulsion using an appropriate surfactant (sodium dodecyl sulfate), whilst the nitronium ions, produced in situ from mixed H2SO4-HNO3 (the nitrating agent), underwent electrophoretic-induced (electrokinetic) mobility. A co-surfactant, butan-1-ol, was used owing to (a) its relative solubility in the aqueous surfactant solution, (b) its ability to aid the solubilization of benzene, (c) the provision of a water-rich (oil-in-water) rather than oil-rich (water-in-oil) microemulsion system and (d) its lack of significant adverse effects on the EOF. The optimum conditions used for the nitration of benzene within the micro reactor were a run of the microemulsion as main reagent stream, then three 30 s segmented injections of mixed acid, with a 5 s push of the microemulsion into the system after each injection, and then a 60 s stopped-flow reaction time before driving reaction product segments to a collection reservoir.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验