Suppr超能文献

软组织生物力学

Biomechanics of soft tissues.

作者信息

Miller K

机构信息

Department of Mechanical and Materials Engineering, University of Western Australia, Nedlands/Perth, Australia.

出版信息

Med Sci Monit. 2000 Jan-Feb;6(1):158-67.

Abstract

Recent developments in Computer-Integrated and Robot-Aided Surgery (in particular, the emergence of automatic surgical tools and robots (as well as advances in Virtual Reality techniques, call for closer examination of the mechanical properties of very soft tissues (such as brain, liver, kidney, etc.). Moreover, internal organs are very susceptible to trauma. In order to protect them properly against car crash and other impact consequences we need to be able to predict the organ deformation. Such prediction can be achieved by proper mathematical modelling followed by a computer simulation. The ultimate goal of our research into the biomechanics of these tissues is development of corresponding, realistic mathematical models. This paper contains experimental results of in vitro, uniaxial, unconfined compression of swine brain tissue obtained by the author in Mechanical Engineering Laboratory, Japan, and discusses liver and kidney in vivo compression experiments conducted in Highway Safety Research Institute and the Medical Centre of The University of Michigan. The stress-strain curves for investigated tissues are concave upward for all compression rates containing no linear portion from which a meaningful elastic modulus might be determined. The tissue response stiffened as the loading speed increased, indicating a strong stress (strain rate dependence. As the step in the direction towards realistic computer simulation of injuries and surgical procedures, this paper presents two mathematical representations of brain, liver and kidney tissue stiffness. Biphasic and single-phase models are discussed. The biphasic model is shown to be inappropriate due to its inability to account for strong stress-strain relationship. Agreement between the proposed single-phase models and experiment is good for compression levels reaching 30% and for loading velocities varying over five orders of magnitude. Presented mathematical models can find applications in computer and robot assisted surgery, e.g. the realistic simulation of surgical procedures (including virtual reality), control systems of surgical robots, and non-rigid registration, as well as ergonomic design for injury prevention.

摘要

计算机集成与机器人辅助手术的最新进展(特别是自动手术工具和机器人的出现,以及虚拟现实技术的进步),要求更深入地研究非常柔软的组织(如大脑、肝脏、肾脏等)的力学特性。此外,内部器官极易受到创伤。为了在车祸及其他撞击后果中妥善保护它们,我们需要能够预测器官的变形情况。这种预测可以通过适当的数学建模并随后进行计算机模拟来实现。我们对这些组织生物力学的研究的最终目标是开发相应的、逼真的数学模型。本文包含了作者在日本机械工程实验室获得的猪脑组织体外单轴无侧限压缩的实验结果,并讨论了在公路安全研究所和密歇根大学医学中心进行的肝脏和肾脏体内压缩实验。对于所有压缩速率,所研究组织的应力 - 应变曲线向上凹,没有可从中确定有意义弹性模量的线性部分。随着加载速度的增加,组织反应变硬,表明存在强烈的应力(应变率依赖性)。作为朝着损伤和手术过程的逼真计算机模拟迈出的一步,本文提出了大脑、肝脏和肾脏组织刚度的两种数学表示。讨论了双相模型和单相模型。结果表明双相模型不合适,因为它无法解释强烈的应力 - 应变关系。所提出的单相模型与实验之间的一致性对于压缩水平达到30%以及加载速度在五个数量级范围内变化时都很好。所提出的数学模型可应用于计算机和机器人辅助手术,例如手术过程的逼真模拟(包括虚拟现实)、手术机器人的控制系统、非刚性配准以及预防损伤的人体工程学设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验