Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P
Institut de Génétique Humaine-CNRS UPR 1142-141, F-34396 Montpellier, France.
Biophys J. 2001 Mar;80(3):1238-50. doi: 10.1016/S0006-3495(01)76100-0.
At least three genes encode T-type calcium channel alpha(1) subunits, and identification of cDNA transcripts provided evidence that molecular diversity of these channels can be further enhanced by alternative splicing mechanisms, especially for the alpha(1G) subunit (Ca(V)3.1). Using whole-cell patch-clamp procedures, we have investigated the electrophysiological properties of five isoforms of the human alpha(1G) subunit that display a distinct III-IV linker, namely, alpha(1G-a), alpha(1G-b), and alpha(1G-bc), as well as a distinct II-III linker, namely, alpha(1G-ae), alpha(1G-be), as expressed in HEK-293 cells. We report that insertion e within the II-III linker specifically modulates inactivation, steady-state kinetics, and modestly recovery from inactivation, whereas alternative splicing within the III-IV linker affects preferentially kinetics and voltage dependence of activation, as well as deactivation and inactivation. By using voltage-clamp protocols mimicking neuronal activities, such as cerebellar train of action potentials and thalamic low-threshold spike, we describe that inactivation properties of alpha(1G-a) and alpha(1G-ae) isoforms can support channel behaviors reminiscent to those described in native neurons. Altogether, these data demonstrate that expression of distinct variants for the T-type alpha(1G) subunit can account for specific low-voltage-activated currents observed in neuronal tissues.
至少有三个基因编码T型钙通道α(1)亚基,cDNA转录本的鉴定提供了证据,表明这些通道的分子多样性可通过可变剪接机制进一步增强,尤其是对于α(1G)亚基(Ca(V)3.1)。我们使用全细胞膜片钳技术,研究了人α(1G)亚基的五种异构体在HEK-293细胞中的电生理特性,这些异构体具有不同的III-IV连接子,即α(1G-a)、α(1G-b)和α(1G-bc),以及不同的II-III连接子,即α(1G-ae)、α(1G-be)。我们报告,II-III连接子中的插入e特异性调节失活、稳态动力学以及从失活中的适度恢复,而III-IV连接子内的可变剪接优先影响激活的动力学和电压依赖性,以及去激活和失活。通过使用模拟神经元活动的电压钳方案,如小脑动作电位序列和丘脑低阈值尖峰,我们描述了α(1G-a)和α(1G-ae)异构体的失活特性可以支持类似于在天然神经元中描述的通道行为。总之,这些数据表明,T型α(1G)亚基不同变体的表达可以解释在神经组织中观察到的特定低电压激活电流。