Thomas T, Kumar N, Cavicchioli R
School of Microbiology and Immunology, The University of New South Wales, Sydney, NSW, 2052, Australia.
J Bacteriol. 2001 Mar;183(6):1974-82. doi: 10.1128/JB.183.6.1974-1982.2001.
Low-temperature-adapted archaea are abundant in the environment, yet little is known about the thermal adaptation of their proteins. We have previously compared elongation factor 2 (EF-2) proteins from Antarctic (Methanococcoides burtonii) and thermophilic (Methanosarcina thermophila) methanogens and found that the M. burtonii EF-2 had greater intrinsic activity at low temperatures and lower thermal stability at high temperatures (T. Thomas and R. Cavicchioli, J. Bacteriol. 182:1328-1332, 2000). While the gross thermal properties correlated with growth temperature, the activity and stability profiles of the EF-2 proteins did not precisely match the optimal growth temperature of each organism. This indicated that intracellular components may affect the thermal characteristics of the EF-2 proteins, and in this study we examined the effects of ribosomes and intracellular solutes. At a high growth temperature the thermophile produced high levels of potassium glutamate, which, when assayed in vitro with EF-2, retarded thermal unfolding and increased catalytic efficiency. In contrast, for the Antarctic methanogen adaptation to growth at a low temperature did not involve the accumulation of stabilizing organic solutes but appeared to result from an increased affinity of EF-2 for GTP and high levels of EF-2 in the cell relative to its low growth rate. Furthermore, ribosomes greatly stimulated GTPase activity and moderately stabilized both EF-2 proteins. These findings illustrate the different physiological strategies that have evolved in two phylogenetically related but thermally distinct methanogens to enable EF-2 to function satisfactorily.
适应低温的古菌在环境中广泛存在,但对其蛋白质的热适应性却知之甚少。我们之前比较了来自南极(嗜冷甲烷球菌)和嗜热(嗜热甲烷八叠球菌)产甲烷菌的延伸因子2(EF-2)蛋白,发现嗜冷甲烷球菌的EF-2在低温下具有更高的内在活性,而在高温下热稳定性较低(T. 托马斯和R. 卡维乔利,《细菌学杂志》182:1328 - 1332,2000)。虽然总体热性质与生长温度相关,但EF-2蛋白的活性和稳定性曲线与每种生物体的最佳生长温度并不完全匹配。这表明细胞内成分可能会影响EF-2蛋白的热特性,在本研究中我们研究了核糖体和细胞内溶质的影响。在高生长温度下,嗜热菌产生高水平的谷氨酸钾,当在体外与EF-2一起测定时,它会延缓热解折叠并提高催化效率。相比之下,对于南极产甲烷菌来说,适应低温生长并不涉及积累稳定的有机溶质,而是似乎源于EF-2对GTP的亲和力增加以及相对于其低生长速率细胞内高水平的EF-2。此外,核糖体极大地刺激了GTPase活性,并适度稳定了两种EF-2蛋白。这些发现说明了在两种系统发育相关但热特性不同的产甲烷菌中进化出的不同生理策略,以使EF-2能够令人满意地发挥功能。