Suppr超能文献

Quantitative imaging of tyrosine hydroxylase and calmodulin in the human brain.

作者信息

Sutoo D, Akiyama K, Yabe K

机构信息

Institute of Medical Science, University of Tsukuba, Tsukuba, Japan.

出版信息

J Neurosci Res. 2001 Mar 1;63(5):369-76. doi: 10.1002/1097-4547(20010301)63:5<369::AID-JNR1031>3.0.CO;2-3.

Abstract

The distributions of tyrosine hydroxylase and calmodulin in adult normal postmortem human brain were analyzed quantitatively. Consecutive coronal sections were obtained from the anterior area of the right hemisphere and were stained immunohistochemically for tyrosine hydroxylase and calmodulin. Stained sections were divided into approximately 3 million microareas at 50 microm intervals, and the immunohistochemical fluorescence intensity in each area was measured by a human brain mapping analyzer, which is a microphotometry system for analysis of the distribution of neurochemicals in a large tissue slice. Immunoreactive staining of tyrosine hydroxylase and calmodulin was observed in almost all brain regions, but its intensity varied. Relatively high levels of calmodulin were observed in brain regions with high levels of tyrosine hydroxylase, though high levels of tyrosine hydroxylase were not always observed in brain regions where high levels of calmodulin were distributed. In particular, high levels of both of tyrosine hydroxylase and calmodulin were distributed in the caudate nucleus and putamen. Previously it was shown that tyrosine hydroxylase was activated and dopamine synthesis was enhanced in the neostriatum region in mice and rats by the intracerebroventricular administration of calcium through a calmodulin-dependent system. The present results combined with these previous findings suggest that the activity of tyrosine hydroxylase in the caudate nucleus and putamen of humans may also be regulated by a calcium/calmodulin-dependent system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验