Poland D
Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
Biopolymers. 2001 Apr 15;58(5):477-90. doi: 10.1002/1097-0282(20010415)58:5<477::AID-BIP1023>3.0.CO;2-L.
We illustrate a new method for the determination of the complete binding polynomial for nucleic acids based on experimental titration data with respect to ligand concentration. From the binding polynomial, one can then calculate the distribution function for the number of ligands bound at any ligand concentration. The method is based on the use of a finite set of moments of the binding distribution function, which are obtained from the titration curve. Using the maximum-entropy method, the moments are then used to construct good approximations to the binding distribution function. Given the distribution functions at different ligand concentrations, one can calculate all of the coefficients in the binding polynomial no matter how many binding sites a molecule has. Knowledge of the complete binding polynomial in turn yields the thermodynamics of binding. This method gives all of the information that can be obtained from binding isotherms without the assumption of any specific molecular model for the nature of the binding. Examples are given for the binding of Mn(2+) and Mg(2+) to t-RNA and for the binding of Mg(2+) and I(6) to poly-C using literature data.
我们阐述了一种基于配体浓度实验滴定数据来测定核酸完整结合多项式的新方法。从结合多项式出发,就能计算出在任何配体浓度下结合的配体数量的分布函数。该方法基于使用从滴定曲线获得的结合分布函数的一组有限矩。然后利用最大熵方法,这些矩被用于构建结合分布函数的良好近似。给定不同配体浓度下的分布函数,无论分子有多少个结合位点,都能计算出结合多项式中的所有系数。完整结合多项式的知识进而得出结合的热力学性质。这种方法给出了无需对结合性质假设任何特定分子模型就能从结合等温线获得的所有信息。利用文献数据给出了Mn(2+)和Mg(2+)与t - RNA结合以及Mg(2+)和I(6)与聚 - C结合的示例。