Zhang S, Scott J M, Haldenwang W G
Department of Microbiology, MC 7758, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
J Bacteriol. 2001 Apr;183(7):2316-21. doi: 10.1128/JB.183.7.2316-2321.2001.
sigma(B), the general stress response sigma factor of Bacillus subtilis, is activated when the cell's energy levels decline or the bacterium is exposed to environmental stress (e.g., heat shock, ethanol). Physical stress activates sigma(B) through a collection of regulatory kinases and phosphatases (the Rsb proteins) which catalyze the release of sigma(B) from an anti-sigma(B) factor inhibitor. The means by which diverse stresses communicate with the Rsb proteins is unknown; however, a role for the ribosome in this process was suggested when several of the upstream members of the sigma(B) stress activation cascade (RsbR, -S, and -T) were found to cofractionate with ribosomes in crude B. subtilis extracts. We now present evidence for the involvement of a ribosome-mediated process in the stress activation of sigma(B). B. subtilis strains resistant to the antibiotic thiostrepton, due to the loss of ribosomal protein L11 (RplK), were found to be blocked in the stress activation of sigma(B). Neither the energy-responsive activation of sigma(B) nor stress-dependent chaperone gene induction (a sigma(B)-independent stress response) was inhibited by the loss of L11. The Rsb proteins required for stress activation of sigma(B) are shown to be active in the RplK(-) strain but fail to be triggered by stress. The data demonstrate that the B. subtilis ribosomes provide an essential input for the stress activation of sigma(B) and suggest that the ribosomes may themselves be the sensors for stress in this system.
σ(B)是枯草芽孢杆菌的一般应激反应σ因子,当细胞能量水平下降或细菌暴露于环境应激(如热休克、乙醇)时被激活。物理应激通过一系列调节激酶和磷酸酶(Rsb蛋白)激活σ(B),这些激酶和磷酸酶催化σ(B)从抗σ(B)因子抑制剂中释放出来。不同应激与Rsb蛋白相互作用的方式尚不清楚;然而,当在枯草芽孢杆菌粗提物中发现σ(B)应激激活级联反应的几个上游成员(RsbR、-S和-T)与核糖体共分离时,提示核糖体在这一过程中发挥作用。我们现在提供证据表明核糖体介导的过程参与了σ(B)的应激激活。发现由于核糖体蛋白L11(RplK)缺失而对硫链丝菌素抗生素耐药的枯草芽孢杆菌菌株,其σ(B)的应激激活受阻。L11的缺失既不抑制σ(B)的能量响应激活,也不抑制应激依赖性伴侣基因诱导(一种不依赖σ(B)的应激反应)。σ(B)应激激活所需的Rsb蛋白在RplK(-)菌株中显示有活性,但不能被应激触发。数据表明,枯草芽孢杆菌核糖体为σ(B)的应激激活提供了必要的输入,并提示核糖体本身可能是该系统中的应激传感器。