Suppr超能文献

利用注意力反馈实现地形混合网络的自组织

Self-organization of topographic mixture networks using attentional feedback.

作者信息

Williamson J R

机构信息

Department of Cognitive and Neural Systems and Center for Adaptive Systems, Boston University, Boston, MA 02115, USA.

出版信息

Neural Comput. 2001 Mar;13(3):563-93. doi: 10.1162/089976601300014466.

Abstract

This article proposes a neural network model of supervised learning that employs biologically motivated constraints of using local, on-line, constructive learning. The model possesses two novel learning mechanisms. The first is a network for learning topographic mixtures. The network's internal category nodes are the mixture components, which learn to encode smooth distributions in the input space by taking advantage of topography in the input feature maps. The second mechanism is an attentional biasing feedback circuit. When the network makes an incorrect output prediction, this feedback circuit modulates the learning rates of the category nodes, by amounts based on the sharpness of their tuning, in order to improve the network's prediction accuracy. The network is evaluated on several standard classification benchmarks and shown to perform well in comparison to other classifiers.

摘要

本文提出了一种监督学习的神经网络模型,该模型采用了具有生物学动机的局部、在线、建设性学习约束。该模型具有两种新颖的学习机制。第一种是用于学习地形混合的网络。该网络的内部类别节点是混合成分,它们通过利用输入特征图中的地形来学习对输入空间中的平滑分布进行编码。第二种机制是注意力偏差反馈电路。当网络做出错误的输出预测时,该反馈电路会根据类别节点调谐的清晰度,按一定量来调制其学习率,以提高网络的预测准确性。该网络在几个标准分类基准上进行了评估,结果表明与其他分类器相比表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验