Suppr超能文献

Amino acid accumulation in frog muscle. II. Are cycloleucine fluxes consistent with an adsorption model for concentrative uptake of amino acid?

作者信息

Neville M C

出版信息

Biochim Biophys Acta. 1975 Mar 25;382(3):393-409. doi: 10.1016/0005-2736(75)90280-1.

Abstract

Cycloleucine accumulation by frog muscle was studied at 0 degrees C and 25 degrees C. At external concentrations less than 5 mM the distribution ratio of cycloleucine is higher at 0 degrees C. At concentrations greater than 5 mM the converse is true due to apparent exclusion of cycloleucine from a larger portion of the cell water at 0 degrees C than at 25 degrees C. The steady state data are consistent with an adsorption model for amino acid accumulation. Flux studies provide a means to rule out this model if all the possible rate-limiting steps in the movement of amino acid into and out of the cell are considered. These steps include intra-cytoplasmic diffusion, desorption from cytoplasmic or membrane sites and passage through the cell membrane. The assumption is made that the rate-limiting step for influx and efflux is the same, allowing the use of either influx or efflux data to examine the model. Diffusion-limited flux is ruled out on the basis of "influx profile analysis" of the time course of cycloleucine entry at both 0 degrees C and 25 degrees C. At least 95% of all intracellular cycloleucine leaves frog muscle cells with a single exponential time course at both 0 degrees C and 25 degrees C. The rate constant of efflux does not vary with cellular concentration. These findings are shown to be incompatible with desorption-limited efflux. They are compatible with membrane-limited efflux only if (i) adsorption sites are located on membranes with direct access to the extracellular space and (ii) the rate constant for desorption is equal to the rate constant of membrane-limited efflux of free amino acid. It is considered unlikely that such a coincidence would occur at both 0 degrees C and 25 degrees C. Therefore, an adsorption model for cycloleucine accumulation in frog muscle appears to be untenable.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验