Suppr超能文献

Reactive nitrogen oxygen species metabolize N-acetylbenzidine.

作者信息

Lakshmi V M, Hsu F F, Davis B B, Zenser T V

机构信息

VA Medical Center, Division of Geriatric Medicine, and Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.

出版信息

Chem Res Toxicol. 2001 Mar;14(3):312-8. doi: 10.1021/tx0001676.

Abstract

A close association has been reported for certain types of cancers influenced by aromatic amines and infection/inflammation. Reactive nitric oxygen species (RNOS), components of the inflammatory response, are bactericidal and tumoricidal, and contribute to the deleterious effects attributed to inflammation on normal tissues. This study assessed the possible transformation of the aromatic amine N-acetylbenzidine (ABZ) by RNOS. RNOS were generated by various conditions to react with ABZ, and samples were evaluated by HPLC. Conditions which generate nitrogen dioxide radical (NO(2)(-) + myeloperoxidase + H(2)O(2), ONOO(-), and NO(2)(-) + HOCl) produced primarily a single new product termed 3'-nitro-ABZ. The myeloperoxidase-catalyzed reaction with 0.3 mM NO(2)(-) was completely inhibited by 1 mM cyanide, and not effected by 100 mM chloride with or without 1 mM taurine. In contrast, conditions which generate N(2)O(3), such as spermine NONOate, did not produce 3'-nitro-ABZ, but rather two compounds termed 4'-OH-AABP and AABP. (1)H NMR and mass spectrometry identified 3'-nitro-ABZ as 3'-nitro-N-acetylbenzidine, 4'-OH-AABP as 4'-OH-4-acetylaminobiphenyl, and AABP as 4-acetylaminobiphenyl. Human polymorphonuclear neutrophils incubated with [(3)H]ABZ and stimulated with beta-phorbol 12-myristate 13-acetate produced 3'-nitro-ABZ in the presence of NO(2)(-) (0.1-1 mM). Neutrophil 3'-nitro-ABZ formation was verified by mass spectrometry and was consistent with myeloperoxidase oxidation of NO(2)(-). The results demonstrate that ABZ forms unique products in the presence of nitrosating and nitrating RNOS, which could influence the carcinogenic process and serve as biomarkers for these reactive species.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验