Hilschmann N, Barnikol H U, Barnikol-Watanabe S, Götz H, Kratzin H, Thinnes F P
Max-Planck-Institut für experimentelle Medizin, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
Naturwissenschaften. 2001 Jan;88(1):2-12. doi: 10.1007/s001140000190.
The morphogenesis of the brain is governed by synaptogenesis. Synaptogenesis in turn is determined by cell adhesion molecules, which bridge the synaptic cleft and, by homophilic contact, decide which neurons are connected and which are not. Because of their enormous diversification in specificities, protocadherins (pcdh alpha, pcdh beta, pcdh gamma), a new class of cadherins, play a decisive role. Surprisingly, the genetic control of the protocadherins is very similar to that of the immunoglobulins. There are three sets of variable (V) genes followed by a corresponding constant (C) gene. Applying the rules of the immunoglobulin genes to the protocadherin genes leads, despite of this similarity, to quite different results in the central nervous system. The lymphocyte expresses one single receptor molecule specifically directed against an outside stimulus. In contrast, there are three specific recognition sites in each neuron, each expressing a different protocadherin. In this way, 4,950 different neurons arising from one stem cell form a neuronal network, in which homophilic contacts can be formed in 52 layers, permitting an enormous number of different connections and restraints between neurons. This network is one module of the central computer of the brain. Since the V-genes are generated during evolution and V-gene translocation during embryogenesis, outside stimuli have no influence on this network. The network is an inborn property of the protocadherin genes. Every circuit produced, as well as learning and memory, has to be based on this genetically predetermined network. This network is so universal that it can cope with everything, even the unexpected. In this respect the neuronal network resembles the recognition sites of the immunoglobulins.
大脑的形态发生受突触发生的支配。而突触发生又由细胞黏附分子决定,这些分子跨越突触间隙,并通过同嗜性接触来决定哪些神经元相互连接,哪些不连接。由于原钙黏蛋白(pcdhα、pcdhβ、pcdhγ)这一新类别的钙黏蛋白在特异性上具有极大的多样性,它们发挥着决定性作用。令人惊讶的是,原钙黏蛋白的基因控制与免疫球蛋白的基因控制非常相似。有三组可变(V)基因,后面跟着一个相应的恒定(C)基因。尽管存在这种相似性,但将免疫球蛋白基因的规则应用于原钙黏蛋白基因时,在中枢神经系统中会产生截然不同的结果。淋巴细胞表达一种单一的受体分子,专门针对外部刺激。相比之下,每个神经元中有三个特定的识别位点,每个位点表达一种不同的原钙黏蛋白。通过这种方式,由一个干细胞产生的4950个不同的神经元形成一个神经网络,其中同嗜性接触可以在52层中形成,允许神经元之间形成大量不同的连接和限制。这个网络是大脑中央计算机的一个模块。由于V基因是在进化过程中产生的,V基因在胚胎发生过程中发生易位,外部刺激对这个网络没有影响。这个网络是原钙黏蛋白基因的一种固有特性。产生的每一个回路,以及学习和记忆,都必须基于这个基因预先确定的网络。这个网络非常通用,它可以应对一切,甚至是意想不到的事情。在这方面,神经网络类似于免疫球蛋白的识别位点。