Soulier S, Ribadeau-Dumas B, Denamur R
Eur J Biochem. 1975 Jan 2;50(2):445-52. doi: 10.1111/j.1432-1033.1975.tb09822.x.
Starting from whole individual ovine casein prepared according to the method of Shahani, K. M. & Sommer, H. H. [J. Dairy Sci. 34, 1003-1009 (1951)], kappa-casein was isolated and purified by successive steps of chromatography on columns of dextran gel and hydroxyapatite. On filtration through Sephadex G-150 in a buffer containing urea, the bulk of the kappa-casein behaved as aggregates appearing in the void volume. Dissociation of these aggregates by reductive cleavage of disulfide bonds with 2-mercaptoethanol, followed by a second filtration step on Sephadex G-150 in the presence of both urea and 2-mercaptoethanol, resulted in retardation of the kappa-casein, with separation from a contaminant representing 10-12% of the material applied. Further purification was achieved by chromatography on hydroxyapatite which eliminated the alpha-s- and beta-caseins. The purified kappa-casein had a molecular weight of about 20000, an absorption coefficient (see journal for formula) at 280 nm of 10.85 and a sialic acid and phosphorous content of 0.3% (w/w) each. The sugar fraction liberated on acid hydrolysis of the caseinomacropeptide showed the presence of N-acetylgalactosamine, galactose and neuraminic acid in equimolar ratio. Neuraminic acid existed mainly as the N-glycolyl derivative. The polypeptide chain of the ovine kappa-casein was composed of about 170 amino-acids residues. Compared to bovine kappa-caseins, the most notable difference was the presence of one additional cysteinyl and four additional aspartyl residues. Starch-gel and polyacrylamide-gel electrophoresis clearly revealed the heterogeneity of ovine kappa-casein. Chromatographic fractionation of whole kappa-casein on DEAE-cellulose also led to the separation of several fractions, the main characteristics of which are presented. Analysis of these fractions indicated that only those components which were firmly bound to DEAE-cellulose were glycosylated.
从按照沙哈尼(Shahani, K. M.)和索默(Sommer, H. H.)[《乳品科学杂志》34, 1003 - 1009 (1951)]的方法制备的全个体绵羊酪蛋白开始,通过在葡聚糖凝胶柱和羟基磷灰石柱上的连续色谱步骤分离并纯化κ-酪蛋白。在含尿素的缓冲液中通过Sephadex G - 150过滤时,大部分κ-酪蛋白表现为出现在空体积中的聚集体。用2-巯基乙醇通过二硫键的还原裂解使这些聚集体解离,随后在尿素和2-巯基乙醇存在下在Sephadex G - 150上进行第二次过滤步骤,导致κ-酪蛋白的滞留,并与占上样物质10 - 12%的一种污染物分离。通过在羟基磷灰石上的色谱法实现了进一步纯化,该方法去除了αs-和β-酪蛋白。纯化的κ-酪蛋白分子量约为20000,在280nm处的吸收系数(见期刊中的公式)为10.85,唾液酸和磷含量均为0.3%(w/w)。酪蛋白巨肽酸水解释放的糖部分显示存在等摩尔比的N-乙酰半乳糖胺、半乳糖和神经氨酸。神经氨酸主要以N-糖基化衍生物形式存在。绵羊κ-酪蛋白的多肽链由约170个氨基酸残基组成。与牛κ-酪蛋白相比,最显著的差异是存在一个额外的半胱氨酰残基和四个额外的天冬氨酰残基。淀粉凝胶和聚丙烯酰胺凝胶电泳清楚地显示了绵羊κ-酪蛋白的异质性。全κ-酪蛋白在DEAE-纤维素上的色谱分级分离也导致了几个级分的分离,并给出了其主要特征。对这些级分的分析表明,只有那些与DEAE-纤维素紧密结合的组分是糖基化的。