Suppr超能文献

用于心脏节律管理的植入式设备对房性心律失常的检测。

Detection of atrial arrhythmia for cardiac rhythm management by implantable devices.

作者信息

Morris M M, KenKnight B H, Lang D J

机构信息

Guidant Corporation, St. Paul, MN 55112, USA.

出版信息

J Electrocardiol. 2000;33 Suppl:133-9. doi: 10.1054/jelc.2000.20305.

Abstract

Implantable atrial defibrillators (IAD) should provide pacing therapy whenever appropriate (ie, typical atrial flutter) to minimize shock-related patient discomfort. Additionally, IADs should provide diagnostics regarding atrial arrhythmia type and frequency of occurrence to enable improved physician management of atrial arrhythmia. To achieve this, IADs should accurately classify atrial arrhythmia such as atrial fibrillation (AF) and atrial flutter (AFL) This article evaluates the performance of an algorithm, atrial rhythm classification (ARC), designed to classify AF and AFL. The ARC algorithm uses maximum rate, standard deviation, and range of the 12 most recent atrial cycle lengths to plot a point in a three-dimensional space. A decision boundary divides the space into 2 regions--faster/unstable atrial cycle lengths (AF) or slower/stable cycle lengths (AFL). Classifications are made on a sliding window of 12 consecutive cycles until the end of the episode is reached. In this way, continuous episode feedback is provided that can be used to help guide device therapy, measure arrhythmia type and frequency of occurrence. Bipolar (1-cm) electrogram episodes of AF (n = 16) and AFL (n = 7) were acquired from 20 patients and retrospectively analyzed using the ARC algorithm. The sensitivity and specificity in this study was 0.993 and 0.982, respectively. The ARC algorithm would have appropriately guided atrial therapy and minimized discomfort associated with defibrillation shocks in this small patient data set warranting further studies. The ARC algorithm may also be beneficial as a diagnostic tool to assist physician management of atrial arrhythmia.

摘要

植入式心房除颤器(IAD)应在适当的时候(如典型心房扑动时)提供起搏治疗,以尽量减少与电击相关的患者不适。此外,IAD应提供有关房性心律失常类型和发生频率的诊断信息,以便医生更好地管理房性心律失常。为实现这一目标,IAD应准确分类房性心律失常,如心房颤动(AF)和心房扑动(AFL)。本文评估了一种旨在对AF和AFL进行分类的算法——心房节律分类(ARC)的性能。ARC算法使用最近12个心房周期长度的最大速率、标准差和范围,在三维空间中绘制一个点。一个决策边界将该空间分为两个区域——较快/不稳定的心房周期长度(AF)或较慢/稳定的周期长度(AFL)。在连续12个周期的滑动窗口上进行分类,直到发作结束。通过这种方式,可提供连续的发作反馈,用于帮助指导设备治疗、测量心律失常类型和发生频率。从20名患者中获取了AF(n = 16)和AFL(n = 7)的双极(1厘米)心电图发作,并使用ARC算法进行回顾性分析。本研究中的敏感性和特异性分别为0.993和0.982。在这个小患者数据集中,ARC算法本可适当指导心房治疗,并将与除颤电击相关的不适降至最低,这值得进一步研究。ARC算法作为一种诊断工具,可能也有助于医生管理房性心律失常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验