Nevo N, Chossat N, Gosgnach W, Logeart D, Mercadier J J, Michel J B
INSERM U460, Faculté de Médecine Xavier Bichat, Paris, France.
J Gene Med. 2001 Jan-Feb;3(1):42-50. doi: 10.1002/1521-2254(2000)9999:9999<::AID-JGM149>3.0.CO;2-A.
Gene delivery to the myocardium using blood-borne adenoviral vectors is hindered by the endothelium, which represents a barrier limiting the infection rate of underlying myocytes. However, endothelial permeability may be modulated by pharmacological agents.
In the present study, we modeled the endothelial barrier in vitro using a human umbilical vein endothelial cell (HUVEC) monolayer seeded on a Transwell membrane as a support and diffusion of fluorescent dextrans as a permeability index. We used alpha-thrombin (100 nM) as a pharmacological agent known to increase endothelial permeability and tested the barrier function of the endothelial cell monolayer on adenovector-mediated luciferase gene transfer to underlying isolated cardiac myocytes.
A confluent HUVEC monolayer represented a considerable physical barrier to dextran diffusion; it reduced the permeability of the micropore membrane alone to fluorescein isothiocyanate (FITC)-labeled dextrans of molecular weights 4, 70, 150 and 2000 kDa by approximately 54, 78, 88 and 98%, respectively. Alpha-thrombin (100 nM) increased the permeability coefficients (P(EC)) by 276, 264, 562 and 4166% for the same dextrans, respectively. A confluent HUVEC monolayer represented a major impediment to adenovector-mediated luciferase gene transfer to cardiac myocytes, largely reducing gene transfer efficiency. However thrombin induced a nine-fold increase in myocyte infection.
In our model, the endothelial cell monolayer represents a major impediment to myocyte adenovector-mediated gene transfer which can be partially improved by pharmacologically increasing endothelial permeability. The Transwell model is therefore particularly useful for testing the efficiency of pharmacological agents in modulating adenovector passage through the endothelial barrier.
使用血源性腺病毒载体将基因递送至心肌受到内皮细胞的阻碍,内皮细胞构成了限制其下方心肌细胞感染率的屏障。然而,内皮细胞通透性可通过药物进行调节。
在本研究中,我们体外构建内皮屏障模型,使用接种于Transwell膜上的人脐静脉内皮细胞(HUVEC)单层作为支撑,并以荧光葡聚糖的扩散作为通透性指标。我们使用α-凝血酶(100 nM)作为已知可增加内皮细胞通透性的药物,并测试内皮细胞单层对腺病毒载体介导的荧光素酶基因转移至下方分离的心肌细胞的屏障功能。
汇合的HUVEC单层对葡聚糖扩散构成了相当大的物理屏障;它分别使单独微孔膜对分子量为4、70、150和2000 kDa的异硫氰酸荧光素(FITC)标记葡聚糖的通透性降低了约54%、78%、88%和98%。对于相同的葡聚糖,α-凝血酶(100 nM)分别使通透性系数(P(EC))增加了276%、264%、562%和4166%。汇合的HUVEC单层对腺病毒载体介导的荧光素酶基因转移至心肌细胞构成了主要障碍,大大降低了基因转移效率。然而,凝血酶使心肌细胞感染增加了9倍。
在我们的模型中,内皮细胞单层对心肌细胞腺病毒载体介导的基因转移构成了主要障碍,通过药物增加内皮细胞通透性可部分改善这一障碍。因此,Transwell模型对于测试药物调节腺病毒载体穿过内皮屏障效率特别有用。