Suppr超能文献

使用溶液放射性同位素进行血管内β射线照射预防再狭窄:铼-188化合物的药理学和剂量学特性

Endovascular beta irradiation for prevention of restenosis using solution radioisotopes: pharmacologic and dosimetric properties of rhenium-188 compounds.

作者信息

Knapp F F, Guhlke S, Beets A L, Lin W Y, Stabin M, Amols H, Weinberger J

机构信息

Life Sciences Division, Oak Ridge National Laboratory, Tennessee 37830-6229, USA.

出版信息

Cardiovasc Radiat Med. 1999 Jan-Mar;1(1):86-97. doi: 10.1016/s1522-1865(98)00009-2.

Abstract

PURPOSE

Irradiation of the arterial wall with beta particles has been shown to be effective in inhibiting neointimal hyperplasia following percutaneous transluminal coronary angioplasty (PTCA). In this study, we describe the use of 188W/188Re generators to obtain 188Re (half-life 16.9 h, maximal beta energy of 2.12 MeV) as a new candidate radioisotope for endovascular irradiation. We have evaluated two [188Re]-compounds as candidates for use as solution-based radiation sources that would allow conventional liquid-filled balloon inflation for delivery of radiation to the vessel wall. While balloon rupture at nominal inflation pressures is a very rare event, (<1 per 10,000 at high pressure), radioisotope release could potentially result in significant dose to radiation-sensitive organs. We have thus evaluated the biodistribution, dosimetry, and kinetics of excretion in rats of two 188Re-labeled compounds that are proposed for intravascular therapy.

MATERIALS AND METHODS

Rhenium-188 was obtained as [188Re]-sodium perrhenate by saline elution of an alumina-based 188W/188Re generator system (>500 mCi). High specific volume solutions of the [188Re]-sodium perrhenate (>50 mCi/ml) were obtained by post-elution concentration of the generator bolus by passage through a tandem silver cation/anion column system. Rhenium-188-labeled benzoylthioacetyltriglycine (MAG3) was prepared by stannous ion reduction of [188Re]-perrhenate in the presence of the benzyl-MAG3 substrate, and was characterized as a single radioactive component. Rhenium-188-perrhenate and [188Re]-MAG3 were administered to separate groups of Fischer rats, which were sacrificed at various times and the tissue distribution of 88Re determined in the major organs. Excretory products were also collected daily from separate groups of rats for each agent over 7 days. The effects of perchlorate and iodide preblocking and postdisplacement of thyroid uptake of [188Re]-perrhenate were also evaluated.

RESULTS

Organ uptake values were modest for both agents [<0.25 % injected dose(ID)/gram of tissue at 6 h] for all organs evaluated except for the thyroid, with the intestines and intestinal contents showing the highest uptake values (0.72-1.97 %ID/gram). Whereas thyroid uptake of 188Re after injection of [188Re]-MAG3 was low (0.16 %ID/gram), uptake after injection of [188Re]-perrhenate was higher and could be blocked by pretreatment with perchlorate (intravenous [IV]) or displaced by perchlorate posttreatment. Also, oral or IV iodide pre- or postadministration could also significantly block or displace thyroid uptake of [188Re]-perrhenate. Both [188Re] agents were excreted primarily via the urinary bladder. The excretion half-life of [188Re]-perrhenate was about 7 h; in contrast, the [188Re]-MAG3 complex showed 50% excretion in less than 2 h. The large intestines received the most significant adsorbed dose, with values of 2.0 cGy/ mCi for [188Re]-perrhenate and 4.6 x 10(-3) cGy/mCi for [188Re]-MAG3.

CONCLUSIONS

Rhenium-188-MAG3 shows more rapid urinary bladder excretion in rats than perrhenate and both agents show low organ uptake. Thyroid uptake of free [188Re]-perrhenate can be blocked or displaced with oral perchlorate administration. For the projected use of [188Re]-MAG3 for balloon inflation required for irradiation of the arterial wall, calculated organ dose values are within acceptable limits in the unlikely event of low pressure balloon rupture. Rhenium-188-MAG3 in solution is thus a new candidate for balloon dilation providing uniform endovascular irradiation following PTCA for restenosis therapy.

摘要

目的

已证明用β粒子照射动脉壁可有效抑制经皮腔内冠状动脉成形术(PTCA)后新生内膜增生。在本研究中,我们描述了使用188W/188Re发生器获得188Re(半衰期16.9小时,最大β能量2.12 MeV)作为血管内照射的新候选放射性同位素。我们评估了两种[188Re]化合物作为基于溶液的辐射源的候选物,这将允许使用传统的充液球囊膨胀来将辐射传递到血管壁。虽然在标称膨胀压力下球囊破裂是非常罕见的事件(高压下每10000次中<1次),但放射性同位素释放可能会对辐射敏感器官造成显著剂量。因此,我们评估了两种拟用于血管内治疗的1,88Re标记化合物在大鼠体内的生物分布、剂量学和排泄动力学。

材料与方法

通过用盐水洗脱基于氧化铝的188W/1,88Re发生器系统(>500 mCi)获得高比活度的[188Re]高铼酸钠溶液。通过使发生器团块通过串联银阳离子/阴离子柱系统进行洗脱后浓缩,获得[188Re]高铼酸钠的高比体积溶液(>50 mCi/ml)。在苄基-MAG3底物存在下,通过亚锡离子还原[188Re]高铼酸盐制备188Re标记的苯甲酰硫代乙酰三甘氨酸(MAG3),并将其表征为单一放射性成分。将188Re高铼酸盐和[188Re]-MAG3分别给予不同组的Fischer大鼠,在不同时间处死大鼠,并测定主要器官中88Re的组织分布。还在7天内每天从不同组的大鼠收集每种药物的排泄产物。还评估了高氯酸盐和碘化物对[188Re]高铼酸盐甲状腺摄取的预阻断和后置换作用。

结果

除甲状腺外,所有评估器官中两种药物的器官摄取值均适中[6小时时<0.25%注射剂量(ID)/克组织],肠道和肠内容物的摄取值最高(0.72 - 1.97%ID/克)。注射[188Re]-MAG3后188Re的甲状腺摄取较低(0.16%ID/克),而注射[188Re]高铼酸盐后的摄取较高,并且可以通过高氯酸盐预处理(静脉内[IV])阻断或通过高氯酸盐后处理置换。此外,口服或静脉内给予碘化物的预处理或后处理也可显著阻断或置换[188Re]高铼酸盐的甲状腺摄取。两种[188Re]药物主要通过膀胱排泄。[188Re]高铼酸盐的排泄半衰期约为7小时;相比之下,[188Re]-MAG3复合物在不到2小时内排泄50%。大肠接受的吸附剂量最高,[188Re]高铼酸盐的值为2.0 cGy/mCi,[188Re]-MAG3的值为4.6×10(-3) cGy/mCi。

结论

188Re-MAG3在大鼠体内的膀胱排泄比高铼酸盐更快,且两种药物的器官摄取均较低。口服高氯酸盐可阻断或置换游离[188Re]高铼酸盐在甲状腺的摄取。对于预计将[188Re]-MAG3用于动脉壁照射所需的球囊膨胀,在低压球囊破裂这种不太可能发生的情况下,计算出的器官剂量值在可接受范围内。因此,溶液中的188Re-MAG3是一种新的候选物,可用于球囊扩张,在PTCA后提供均匀的血管内照射以进行再狭窄治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验