Lionetto M G, Giordona M E, Nicolardi G, Schettino T
Laboratorio di Fisiologia Generale e Ambientale, Dipartimento di Biologia, Università di Lecce, Italy.
Cell Physiol Biochem. 2001;11(1):41-54. doi: 10.1159/000047791.
Eel intestinal epithelium when bathed symmetrically with normal Ringer solution develops a net Cl(-) current (short circuit current, Isc) giving rise to a negative transepithelial potential (Vt) at the basolateral side of the epithelium, lower in fresh-water (FW)-acclimated animals with respect to sea-water (SW). The aim of the present work was to study the cell response to hypertonic stress of FW eel intestinal epithelium in relation to Cl(-) absorption. The hypertonicity of the external bathing solutions produced first a transient increase of Vt and Isc, then followed (after 10-15 min) by a gradual and sustained increase which reached the maximum value after 40-60 min. The morphometric analysis of the intestine revealed the shrinkage of the cells after 5 min hypertonicity exposure, and then a regulatory volume increase (RVI) response, which parallels the gradual and sustained increase in the electrophysiological parameters. This last phase is inhibited by drugs known to block Cl(-) absorption in eel intestine, such as luminal bumetanide (10 microM), specific inhibitor of Na(+)-K(+)-2Cl(-) cotransport, or basolateral NPPB (0.5 mM), dichloro-DPC (0.5 mM), inhibitors of basolateral Cl(-) conductance. Serosal dimethyl-amiloride (100 microM), specific inhibitor of the Na(+)/H(+) antiport, was ineffective on the hyperosmotic response. Bicarbonate revealed a crucial role as a modulator of hypertonicity response, since in bicarbonate-free conditions or in the presence of serosal 0.25 mM SITS, blocker of HCO(3)(-) transport systems, the Isc response to hypertonicity was lost. In nominally Ca(2+)-free conditions the Isc response to hypertonicity was abolished. The same results were obtained by bilateral addition of 100 microM verapamil or 50 microM nifedipine or 1 mM lanthanum, known Ca(2+) channel blockers, indicating that extracellular Ca(2+) plays a key role for the activation of Cl(-) current in the response to hypertonic stress. The data show that in the eel intestinal epithelium the hypertonicity of the external medium affects cell volume which in turn might represent the signal to increase the rate of Cl(-) transport. This response is sustained by the activation of the luminal Na(+)-K(+)-2Cl(-) cotransporter and the functionality of basolateral Cl(-) channels.
当用正常林格溶液对称灌流时,鳗鱼肠上皮会产生净氯离子电流(短路电流,Isc),导致上皮基底外侧出现负跨上皮电位(Vt),在淡水(FW)适应的动物中,该电位相对于海水(SW)中的动物更低。本研究的目的是研究FW鳗鱼肠上皮对高渗应激的细胞反应与氯离子吸收的关系。外部灌流溶液的高渗性首先使Vt和Isc短暂增加,然后(10 - 15分钟后)逐渐持续增加,在40 - 60分钟后达到最大值。肠道的形态计量学分析显示,高渗暴露5分钟后细胞出现收缩,随后出现调节性容积增加(RVI)反应,这与电生理参数的逐渐持续增加平行。最后这个阶段受到已知可阻断鳗鱼肠道氯离子吸收的药物抑制,如腔面布美他尼(10微摩尔),它是钠钾氯共转运体的特异性抑制剂,或基底外侧NPPB(0.5毫摩尔)、二氯-DPC(0.5毫摩尔),它们是基底外侧氯离子电导的抑制剂。浆膜侧二甲基氨氯吡脒(100微摩尔),钠氢交换体的特异性抑制剂,对高渗反应无效。碳酸氢盐显示出作为高渗反应调节剂的关键作用,因为在无碳酸氢盐条件下或存在浆膜侧0.25毫摩尔SITS(一种碳酸氢根转运系统阻滞剂)时,对高渗的Isc反应消失。在名义上无钙条件下,对高渗的Isc反应被消除。通过双侧添加100微摩尔维拉帕米或50微摩尔硝苯地平或1毫摩尔镧(已知的钙通道阻滞剂)也得到了相同结果,表明细胞外钙在高渗应激反应中对氯离子电流的激活起关键作用。数据表明,在鳗鱼肠上皮中,外部介质的高渗性影响细胞容积,而细胞容积反过来可能是增加氯离子转运速率的信号。这种反应通过腔面钠钾氯共转运体的激活和基底外侧氯离子通道的功能得以维持。