Frost H M
Department of Orthopaedic Surgery, Southern Colorado Clinic, Pueblo, Colorado 81004, USA.
Anat Rec. 2001 Apr 1;262(4):398-419. doi: 10.1002/ar.1049.
Efforts to understand our anatomy and physiology can involve four often overlapping phases. We study what occurs, then how, then ask why, and then seek clinical applications. In that regard, in 1960 views, bone's effector cells (osteoblasts and osteoclasts) worked chiefly to maintain homeostasis under the control of nonmechanical agents, and that physiology had little to do with anatomy, biomechanics, tissue-level things, muscle, and other clinical applications. But it seems later-discovered tissue-level mechanisms and functions (including biomechanical ones, plus muscle) are the true key players in bone physiology, and homeostasis ranks below the mechanical functions. Adding that information to earlier views led to the Utah paradigm of skeletal physiology that combines varied anatomical, clinical, pathological, and basic science evidence and ideas. While it explains in a general way how strong muscles make strong bones and chronically weak muscles make weak ones, and while many anatomists know about the physiology that fact depends on, poor interdisciplinary communication left people in many other specialties unaware of it and its applications. Those applications concern 1.) healing of fractures, osteotomies, and arthrodeses; 2.) criteria that distinguish mechanically competent from incompetent bones; 3.) design criteria that should let load-bearing implants endure; 4.) how to increase bone strength during growth, and how to maintain it afterwards on earth and in microgravity situations in space; 5.) how and why healthy women only lose bone next to marrow during menopause; 6.) why normal bone functions can cause osteopenias; 7.) why whole-bone strength and bone health are different matters; 8.) why falls can cause metaphyseal and diaphyseal fractures of the radius in children, but mainly metaphyseal fractures of that bone in aged adults; 9.) which methods could best evaluate whole-bone strength, "osteopenias" and "osteoporoses"; 10.) and why most "osteoporoses" should not have bone-genetic causes and some could have extraosseous genetic causes. Clinical specialties that currently require this information include orthopaedics, endocrinology, radiology, rheumatology, pediatrics, neurology, nutrition, dentistry, and physical, space and sports medicine. Basic science specialties include absorptiometry, anatomy, anthropology, biochemistry, biomechanics, biophysics, genetics, histology, pathology, pharmacology, and cell and molecular biology. This article reviews our present general understanding of this new bone physiology and some of its clinical applications and implications. It must leave to other times, places, and people the resolution of questions about that new physiology, and to understand the many devils that should lie in its details. (Thompson D'Arcy, 1917).
了解人体解剖学和生理学的努力通常涉及四个经常重叠的阶段。我们先研究发生了什么,然后研究如何发生,接着探究原因,最后寻求临床应用。在这方面,按照1960年的观点,骨骼的效应细胞(成骨细胞和破骨细胞)主要在非机械因素的控制下维持体内平衡,并且生理学与解剖学、生物力学、组织层面的因素、肌肉以及其他临床应用几乎没有关系。但后来发现的组织层面的机制和功能(包括生物力学机制以及肌肉)似乎才是骨骼生理学的真正关键因素,而体内平衡的重要性低于机械功能。将这些信息融入早期观点,便形成了骨骼生理学的犹他范式,该范式整合了各种解剖学、临床、病理学及基础科学的证据和观点。虽然它大体上解释了强壮的肌肉如何使骨骼强壮,长期虚弱的肌肉如何使骨骼变弱,而且许多解剖学家了解这一事实所依赖的生理学知识,但跨学科交流不畅使得许多其他专业的人并不知晓这一范式及其应用。这些应用涉及:1. 骨折、截骨术和关节融合术的愈合;2. 区分具有机械功能的骨骼和不具有机械功能的骨骼的标准;3. 使承重植入物能够持久使用的设计标准;4. 在生长过程中如何增加骨强度,以及之后在地球上和太空微重力环境中如何维持骨强度;5. 健康女性在绝经期间为何仅在靠近骨髓处骨质流失;6. 正常的骨骼功能为何会导致骨质减少;7. 全骨强度和骨骼健康为何是不同的问题;8. 为什么跌倒会导致儿童桡骨的干骺端和骨干骨折,而在老年人中主要导致该骨的干骺端骨折;9. 哪些方法能够最佳地评估全骨强度、“骨质减少症”和“骨质疏松症”;10. 为什么大多数“骨质疏松症”不应由骨骼遗传因素引起,而有些可能有骨外遗传因素。目前需要这些信息的临床专业包括骨科、内分泌科、放射科、风湿科、儿科、神经科、营养科、牙科以及物理医学、太空医学和运动医学。基础科学专业包括骨密度测定、解剖学、人类学、生物化学、生物力学、生物物理学、遗传学、组织学、病理学、药理学以及细胞和分子生物学。本文综述了我们目前对这种新的骨骼生理学及其一些临床应用和影响的总体理解。关于这种新生理学的问题的解答以及对其细节中诸多复杂因素的理解,必须留待其他时间、地点和人员去完成。(汤普森·达西,1917年)