Suppr超能文献

光合生物中依赖铁氧化还原蛋白的胆色素还原酶HY2家族的功能基因组分析

Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms.

作者信息

Frankenberg N, Mukougawa K, Kohchi T, Lagarias J C

机构信息

Section of Molecular and Cellular Biology, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.

出版信息

Plant Cell. 2001 Apr;13(4):965-78. doi: 10.1105/tpc.13.4.965.

Abstract

Phytobilins are linear tetrapyrrole precursors of the light-harvesting prosthetic groups of the phytochrome photoreceptors of plants and the phycobiliprotein photosynthetic antennae of cyanobacteria, red algae, and cryptomonads. Previous biochemical studies have established that phytobilins are synthesized from heme via the intermediacy of biliverdin IX alpha (BV), which is reduced subsequently by ferredoxin-dependent bilin reductases with different double-bond specificities. By exploiting the sequence of phytochromobilin synthase (HY2) of Arabidopsis, an enzyme that catalyzes the ferredoxin-dependent conversion of BV to the phytochrome chromophore precursor phytochromobilin, genes encoding putative bilin reductases were identified in the genomes of various cyanobacteria, oxyphotobacteria, and plants. Phylogenetic analyses resolved four classes of HY2-related genes, one of which encodes red chlorophyll catabolite reductases, which are bilin reductases involved in chlorophyll catabolism in plants. To test the catalytic activities of these putative enzymes, representative HY2-related genes from each class were amplified by the polymerase chain reaction and expressed in Escherichia coli. Using a coupled apophytochrome assembly assay and HPLC analysis, we examined the ability of the recombinant proteins to catalyze the ferredoxin-dependent reduction of BV to phytobilins. These investigations defined three new classes of bilin reductases with distinct substrate/product specificities that are involved in the biosynthesis of the phycobiliprotein chromophore precursors phycoerythrobilin and phycocyanobilin. Implications of these results are discussed with regard to the pathways of phytobilin biosynthesis and their evolution.

摘要

藻胆素是植物光敏色素光捕获辅基以及蓝细菌、红藻和隐藻的藻胆蛋白光合天线的线性四吡咯前体。先前的生化研究已证实,藻胆素是由血红素经胆绿素IXα(BV)中间体合成的,随后BV由具有不同双键特异性的铁氧化还原蛋白依赖性胆素还原酶还原。通过利用拟南芥的藻胆色素合成酶(HY2)序列(一种催化铁氧化还原蛋白依赖性将BV转化为光敏色素发色团前体藻胆色素的酶),在各种蓝细菌、产氧光合细菌和植物的基因组中鉴定出了编码假定胆素还原酶的基因。系统发育分析解析出四类与HY2相关的基因,其中一类编码红色叶绿素分解代谢物还原酶,它们是参与植物叶绿素分解代谢的胆素还原酶。为了测试这些假定酶的催化活性,通过聚合酶链反应扩增了每类中的代表性HY2相关基因,并在大肠杆菌中表达。使用偶联的脱辅基光敏色素组装测定法和高效液相色谱分析,我们检测了重组蛋白催化铁氧化还原蛋白依赖性将BV还原为藻胆素的能力。这些研究确定了三类新的具有不同底物/产物特异性的胆素还原酶,它们参与藻胆蛋白发色团前体藻红胆素和藻蓝胆素的生物合成。本文讨论了这些结果对于藻胆素生物合成途径及其进化的意义。

相似文献

3
Ferredoxin-dependent bilin reductases in eukaryotic algae: Ubiquity and diversity.
J Plant Physiol. 2017 Oct;217:57-67. doi: 10.1016/j.jplph.2017.05.022. Epub 2017 May 31.
4
On the evolution of the plant phytochrome chromophore biosynthesis.
Plant Physiol. 2023 Aug 31;193(1):246-258. doi: 10.1093/plphys/kiad327.
5
Electrostatic interaction of phytochromobilin synthase and ferredoxin for biosynthesis of phytochrome chromophore.
J Biol Chem. 2010 Feb 12;285(7):5056-65. doi: 10.1074/jbc.M109.075747. Epub 2009 Dec 8.
6
The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2.
New Phytol. 2017 May;214(3):1145-1157. doi: 10.1111/nph.14422. Epub 2017 Jan 20.
7
Mechanistic studies of the phytochromobilin synthase HY2 from Arabidopsis.
J Biol Chem. 2008 Oct 10;283(41):27555-27564. doi: 10.1074/jbc.M803761200. Epub 2008 Jul 25.
8
Insights into phycoerythrobilin biosynthesis point toward metabolic channeling.
J Biol Chem. 2006 Sep 15;281(37):27081-9. doi: 10.1074/jbc.M605154200. Epub 2006 Jul 20.
10
Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8310-5. doi: 10.1073/pnas.1201744109. Epub 2012 May 7.

引用本文的文献

1
Engineering of Phycourobilin Synthase: PubS to a Two-Electron Reductase.
Plant Cell Physiol. 2025 Feb 28;66(2):229-237. doi: 10.1093/pcp/pcae098.
2
Functional Modification of Cyanobacterial Phycobiliprotein and Phycobilisomes through Bilin Metabolism Control.
ACS Synth Biol. 2024 Aug 16;13(8):2391-2401. doi: 10.1021/acssynbio.4c00094. Epub 2024 Jul 22.
4
Loss of Biliverdin Reductase Increases Oxidative Stress in the Cyanobacterium sp. PCC 7002.
Microorganisms. 2023 Oct 20;11(10):2593. doi: 10.3390/microorganisms11102593.
6
Elucidating the origins of phycocyanobilin biosynthesis and phycobiliproteins.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2300770120. doi: 10.1073/pnas.2300770120. Epub 2023 Apr 18.
7
Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes.
Photochem Photobiol Sci. 2022 Apr;21(4):471-491. doi: 10.1007/s43630-022-00213-3. Epub 2022 Apr 11.
8
The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.
Chem Rev. 2021 Dec 22;121(24):14906-14956. doi: 10.1021/acs.chemrev.1c00194. Epub 2021 Oct 20.

本文引用的文献

1
Cryptomonad biliproteins: Bilin types and locations.
Photosynth Res. 1996 May;48(1-2):163-70. doi: 10.1007/BF00041006.
2
CHLOROPHYLL DEGRADATION.
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:67-95. doi: 10.1146/annurev.arplant.50.1.67.
6
Prokaryotes and phytochrome. The connection to chromophores and signaling.
Plant Physiol. 1999 Dec;121(4):1059-68. doi: 10.1104/pp.121.4.1059.
7
CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000.
Nucleic Acids Res. 2000 Jan 1;28(1):72. doi: 10.1093/nar/28.1.72.
8
Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II.
FEMS Microbiol Lett. 1999 Dec 15;181(2):253-60. doi: 10.1111/j.1574-6968.1999.tb08852.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验