Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J
Institut für Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria.
J Biol Chem. 2001 Jun 22;276(25):22100-6. doi: 10.1074/jbc.M101469200. Epub 2001 Apr 2.
In cochlea inner hair cells (IHCs), L-type Ca(2+) channels (LTCCs) formed by alpha1D subunits (D-LTCCs) possess biophysical and pharmacological properties distinct from those of alpha1C containing C-LTCCs. We investigated to which extent these differences are determined by alpha1D itself by analyzing the biophysical and pharmacological properties of cloned human alpha1D splice variants in tsA-201 cells. Variant alpha1D(8A,) containing exon 8A sequence in repeat I, yielded alpha1D protein and L-type currents, whereas no intact protein and currents were observed after expression with exon 8B. In whole cell patch-clamp recordings (charge carrier 15-20 mm Ba(2+)), alpha1D(8A) - mediated currents activated at more negative voltages (activation threshold, -45.7 versus -31.5 mV, p < 0.05) and more rapidly (tau(act) for maximal inward currents 0.8 versus 2.3 ms; p < 0.05) than currents mediated by rabbit alpha1C. Inactivation during depolarizing pulses was slower than for alpha1C (current inactivation after 5-s depolarizations by 90 versus 99%, p < 0.05) but faster than for LTCCs in IHCs. The sensitivity for the dihydropyridine (DHP) L-type channel blocker isradipine was 8.5-fold lower than for alpha1C. Radioligand binding experiments revealed that this was not due to a lower affinity for the DHP binding pocket, suggesting that differences in the voltage-dependence of DHP block account for decreased sensitivity of D-LTCCs. Our experiments show that alpha1D(8A) subunits can form slowly inactivating LTCCs activating at more negative voltages than alpha1C. These properties should allow D-LTCCs to control physiological processes, such as diastolic depolarization in sinoatrial node cells, neurotransmitter release in IHCs and neuronal excitability.
在耳蜗内毛细胞(IHC)中,由α1D亚基形成的L型钙通道(LTCC,即D-LTCC)具有与含α1C的C-LTCC不同的生物物理和药理学特性。我们通过分析tsA-201细胞中克隆的人α1D剪接变体的生物物理和药理学特性,研究了这些差异在多大程度上由α1D自身决定。包含重复序列I中外显子8A序列的变体α1D(8A)产生了α1D蛋白和L型电流,而用外显子8B表达后未观察到完整蛋白和电流。在全细胞膜片钳记录中(电荷载体为15 - 20 mM Ba(2+)),α1D(8A)介导的电流在更负的电压下激活(激活阈值,-45.7 mV对-31.5 mV,p < 0.05),且比兔α1C介导的电流激活更快(最大内向电流的τ(act)为0.8 ms对2.3 ms;p < 0.05)。去极化脉冲期间的失活比α1C慢(5秒去极化后电流失活90%对99%,p < 0.05),但比IHC中的LTCC快。二氢吡啶(DHP)L型通道阻滞剂异搏定的敏感性比α1C低8.5倍。放射性配体结合实验表明,这不是由于对DHP结合口袋的亲和力较低,提示DHP阻断电压依赖性的差异导致D-LTCC敏感性降低。我们的实验表明,α1D(8A)亚基可形成比α1C在更负电压下激活的缓慢失活的LTCC。这些特性应使D-LTCC能够控制生理过程,如窦房结细胞的舒张期去极化、IHC中的神经递质释放和神经元兴奋性。