Haddad Sabrin, Hessenberger Manuel, Ablinger Cornelia, Eibl Clarissa, Stanika Ruslan, Campiglio Marta, Obermair Gerald J
Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria.
Pharmaceuticals (Basel). 2024 Nov 28;17(12):1608. doi: 10.3390/ph17121608.
αδ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for αδ-1) and CACNA2D3 (coding for αδ-3) genes were identified in patients with autism spectrum disorder (ASD). However, the pathogenicity of these variants is not known, and the molecular mechanism by which αδ proteins may contribute to the pathophysiology of autism is, as of today, not understood. Therefore, in this study we functionally characterized two heterozygous missense variants in αδ-1 (p.R351T) and αδ-3 (p.A275T), previously identified in patients with ASD.
Electrophysiological recordings in transfected tsA201 cells were used to study specific channel-dependent functions of mutated αδ proteins. Membrane expression, presynaptic targeting, and trans-synaptic signaling of mutated αδ proteins were studied upon expression in murine cultured hippocampal neurons.
Homologous expression of both mutated αδ proteins revealed a strongly reduced membrane expression and synaptic localization compared to the corresponding wild type αδ proteins. Moreover, the A275T mutation in αδ-3 resulted in an altered glycosylation pattern upon heterologous expression. However, neither of the mutations compromised the biophysical properties of postsynaptic L-type (Ca1.2 and Ca1.3) and presynaptic P/Q-type (Ca2.1) channels when co-expressed in tsA201 cells. Furthermore, presynaptic expression of p.R351T in the αδ-1 splice variant lacking exon 23 did not affect trans-synaptic signaling to postsynaptic GABA receptors.
Our data provide evidence that the pathophysiological mechanisms of ASD-causing mutations of αδ proteins may not involve their classical channel-dependent and trans-synaptic functions. Alternatively, these mutations may induce subtle changes in synapse formation or neuronal network function, highlighting the need for future αδ protein-linked disease models.
αδ蛋白调节电压门控钙通道的膜转运和生物物理特性。此外,它们还调节轴突布线、突触形成和跨突触信号传导。在自闭症谱系障碍(ASD)患者中鉴定出了CACNA2D1(编码αδ-1)和CACNA2D3(编码αδ-3)基因中的几种罕见错义变体。然而,这些变体的致病性尚不清楚,截至目前,αδ蛋白可能导致自闭症病理生理学的分子机制也尚未明确。因此,在本研究中,我们对先前在ASD患者中鉴定出的αδ-1(p.R351T)和αδ-3(p.A275T)中的两个杂合错义变体进行了功能表征。
在转染的tsA201细胞中进行电生理记录,以研究突变的αδ蛋白的特定通道依赖性功能。在小鼠培养的海马神经元中表达后,研究突变的αδ蛋白的膜表达、突触前定位和跨突触信号传导。
与相应的野生型αδ蛋白相比,两种突变的αδ蛋白的同源表达均显示膜表达和突触定位显著降低。此外,αδ-3中的A275T突变在异源表达时导致糖基化模式改变。然而,当在tsA201细胞中共表达时,这两种突变均未损害突触后L型(Ca1.2和Ca1.3)和突触前P/Q型(Ca2.1)通道的生物物理特性。此外,在缺乏外显子23的αδ-1剪接变体中p.R351T的突触前表达不影响向突触后GABA受体的跨突触信号传导。
我们的数据提供了证据,表明导致ASD的αδ蛋白突变的病理生理机制可能不涉及其经典的通道依赖性和跨突触功能。或者,这些突变可能在突触形成或神经网络功能中诱导细微变化,突出了未来αδ蛋白相关疾病模型的必要性。