Suppr超能文献

Mechanism for increased hippocampal synaptic strength following differential experience.

作者信息

Foster T C, Dumas T C

机构信息

Department of Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-6209, USA.

出版信息

J Neurophysiol. 2001 Apr;85(4):1377-83. doi: 10.1152/jn.2001.85.4.1377.

Abstract

Exposure to novel environments or behavioral training is associated with increased strength at hippocampal synapses. The present study employed quantal analysis techniques to examine the mechanism supporting changes in synaptic transmission that occur following differential behavioral experience. Measures of CA1 synaptic strength were obtained from hippocampal slices of rats exposed to novel environments or maintained in individual cages. The input/output (I/O) curve of extracellularly recorded population excitatory postsynaptic potentials (EPSPs) increased for animals exposed to enrichment. The amplitude of the synaptic response of the field potential was related to the fiber potential amplitude and the paired-pulse ratio, however, these measures were not altered by differential experience. Estimates of biophysical parameters of transmission were determined for intracellularly recorded unitary responses of CA1 pyramidal cells. Enrichment was associated with an increase in the mean unitary synaptic response, an increase in quantal size, and a trend for decreased input resistance and reduction in the stimulation threshold to elicit a unitary response. Paired-pulse facilitation, the percent of response failures, coefficient of variance, and estimates of quantal content were not altered by experience but correlated well with the mean unitary response amplitude. The results suggest that baseline synaptic strength is determined, to a large extent, by presynaptic release mechanisms. However, increased synaptic transmission following environmental enrichment is likely due to an increase in the number or efficacy of receptors at some synapses and the emergence of functional synaptic contacts between previously unconnected CA3 and CA1 cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验