Ronai Z, Barta C, Sasvari-Szekely M, Guttman A
Novartis Agricultural Discovery Institute, La Jolla, CA, USA.
Electrophoresis. 2001 Jan;22(2):294-9. doi: 10.1002/1522-2683(200101)22:2<294::AID-ELPS294>3.0.CO;2-4.
Applicability of modern microfabrication technology to electrophoresis microchips initiated a rapidly moving interdisciplinary field in analytical chemistry. Electric field mediated separations in microfabricated devices (electrophoresis microchips) are significantly faster than conventional gel electrophoresis, usually completed in seconds to minutes. Electrophoretic separation of DNA molecules on microfabricated devices proved to have the potential to improve the throughput of analysis by orders of magnitude. The flexibility of electrophoresis microchips allows the use of a plethora of separation matrices and conditions. In this paper, we report on electric field mediated separation of fluorescent intercalator-labeled dsDNA fragments in polyvinylpyrrolidone matrix-filled microchannel structures. The separations were detected in real time by a confocal, single-point laser-induced fluorescence/photomultiplier setup. Effects of the sieving matrix concentration (Ferguson plot), migration characteristics (reptation plot), separation temperature (Arrhenius plot), as well as applied electric field strength and intercalator concentration on the separation of DNA fragments are thoroughly discussed.
现代微加工技术在电泳微芯片中的应用开创了分析化学中一个快速发展的跨学科领域。在微加工设备(电泳微芯片)中,电场介导的分离比传统凝胶电泳快得多,通常在几秒到几分钟内即可完成。事实证明,在微加工设备上对DNA分子进行电泳分离有潜力将分析通量提高几个数量级。电泳微芯片的灵活性使得可以使用大量的分离基质和条件。在本文中,我们报告了在填充有聚乙烯吡咯烷酮基质的微通道结构中对荧光嵌入剂标记的双链DNA片段进行电场介导的分离。通过共聚焦单点激光诱导荧光/光电倍增管装置实时检测分离情况。深入讨论了筛分基质浓度(弗格森图)、迁移特性(蠕动图)、分离温度(阿累尼乌斯图)以及外加电场强度和嵌入剂浓度对DNA片段分离的影响。