Suppr超能文献

关于自交不亲和单倍型的起源:通过自交亲和中间体的转变。

On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates.

作者信息

Uyenoyama M K, Zhang Y, Newbigin E

机构信息

Department of Biology, Duke University, Durham, North Carolina 27708-0338, USA.

出版信息

Genetics. 2001 Apr;157(4):1805-17. doi: 10.1093/genetics/157.4.1805.

Abstract

Self-incompatibility (SI) in flowering plants entails the inhibition of fertilization by pollen that express specificities in common with the pistil. In species of the Solanaceae, Rosaceae, and Scrophulariaceae, the inhibiting factor is an extracellular ribonuclease (S-RNase) secreted by stylar tissue. A distinct but as yet unknown gene (provisionally called pollen-S) appears to determine the specific S-RNase from which a pollen tube accepts inhibition. The S-RNase gene and pollen-S segregate with the classically defined S-locus. The origin of a new specificity appears to require, at minimum, mutations in both genes. We explore the conditions under which new specificities may arise from an intermediate state of loss of self-recognition. Our evolutionary analysis of mutations that affect either pistil or pollen specificity indicates that natural selection favors mutations in pollen-S that reduce the set of pistils from which the pollen accepts inhibition and disfavors mutations in the S-RNase gene that cause the nonreciprocal acceptance of pollen specificities. We describe the range of parameters (rate of receipt of self-pollen and relative viability of inbred offspring) that permits the generation of a succession of new specificities. This evolutionary pathway begins with the partial breakdown of SI upon the appearance of a mutation in pollen-S that frees pollen from inhibition by any S-RNase presently in the population and ends with the restoration of SI by a mutation in the S-RNase gene that enables pistils to reject the new pollen type.

摘要

开花植物中的自交不亲和性(SI)是指与雌蕊具有共同特异性的花粉会抑制受精作用。在茄科、蔷薇科和玄参科的植物中,抑制因子是花柱组织分泌的一种细胞外核糖核酸酶(S-RNase)。一个独特但尚未明确的基因(暂称为花粉-S基因)似乎决定了花粉管接受抑制作用的特定S-RNase。S-RNase基因和花粉-S基因与经典定义的S位点连锁分离。新特异性的产生似乎至少需要这两个基因都发生突变。我们探究了在何种条件下新特异性可能从自我识别丧失的中间状态产生。我们对影响雌蕊或花粉特异性的突变进行的进化分析表明,自然选择有利于花粉-S基因中的突变,这些突变会减少花粉接受抑制作用的雌蕊种类,而不利于S-RNase基因中导致花粉特异性非相互接受的突变。我们描述了一系列参数(自花花粉的接受率和近交后代的相对活力),这些参数允许产生一系列新的特异性。这种进化途径始于花粉-S基因发生突变后自交不亲和性的部分瓦解,该突变使花粉不受种群中现有任何S-RNase的抑制,而终于S-RNase基因发生突变后自交不亲和性的恢复,该突变使雌蕊能够排斥新的花粉类型。

相似文献

1
On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates.
Genetics. 2001 Apr;157(4):1805-17. doi: 10.1093/genetics/157.4.1805.
2
Patterns of variation within self-incompatibility loci.
Mol Biol Evol. 2003 Nov;20(11):1778-94. doi: 10.1093/molbev/msg209. Epub 2003 Jul 28.
4
Compatibility and incompatibility in S-RNase-based systems.
Ann Bot. 2011 Sep;108(4):647-58. doi: 10.1093/aob/mcr179. Epub 2011 Jul 28.
6
Self-incompatibility in Petunia: a self/nonself-recognition mechanism employing S-locus F-box proteins and S-RNase to prevent inbreeding.
Wiley Interdiscip Rev Dev Biol. 2012 Mar-Apr;1(2):267-75. doi: 10.1002/wdev.10. Epub 2011 Nov 17.
7
Genetic features of a pollen-part mutation suggest an inhibitory role for the Antirrhinum pollen self-incompatibility determinant.
Plant Mol Biol. 2009 Jul;70(5):499-509. doi: 10.1007/s11103-009-9487-9. Epub 2009 Apr 10.
8
S-RNase-based self-incompatibility in Petunia inflata.
Ann Bot. 2011 Sep;108(4):637-46. doi: 10.1093/aob/mcq253. Epub 2010 Dec 30.
10
Mutational origin of new mating type specificities in flowering plants.
Genes Genet Syst. 2000 Dec;75(6):305-11. doi: 10.1266/ggs.75.305.

引用本文的文献

2
Early-acting inbreeding depression can evolve as an inbreeding avoidance mechanism.
Proc Biol Sci. 2024 Mar 13;291(2018):20232467. doi: 10.1098/rspb.2023.2467. Epub 2024 Mar 6.
3
Molecular insights into self-incompatibility systems: From evolution to breeding.
Plant Commun. 2024 Feb 12;5(2):100719. doi: 10.1016/j.xplc.2023.100719. Epub 2023 Sep 16.
5
Stop and go signals at the stigma-pollen interface of the Brassicaceae.
Plant Physiol. 2023 Sep 22;193(2):927-948. doi: 10.1093/plphys/kiad301.
8
Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection.
Evol Appl. 2020 Mar 3;13(6):1279-1297. doi: 10.1111/eva.12933. eCollection 2020 Jul.
9
Population Genomics of Transitions to Selfing in Brassicaceae Model Systems.
Methods Mol Biol. 2020;2090:269-287. doi: 10.1007/978-1-0716-0199-0_11.

本文引用的文献

1
Signaling the arrest of pollen tube development in self-incompatible plants.
Science. 1994 Dec 2;266(5190):1505-8. doi: 10.1126/science.266.5190.1505.
2
Structure of the incompatibility gene; induced mutation rate.
Heredity (Edinb). 1949 Dec;3(3):339-55. doi: 10.1038/hdy.1949.25.
4
Hypervariable Domains of Self-Incompatibility RNases Mediate Allele-Specific Pollen Recognition.
Plant Cell. 1997 Oct;9(10):1757-1766. doi: 10.1105/tpc.9.10.1757.
5
Evolutionary dynamics of self-incompatibility alleles in Brassica.
Genetics. 2000 Sep;156(1):351-9. doi: 10.1093/genetics/156.1.351.
6
Evolutionary dynamics of dual-specificity self-incompatibility alleles.
Plant Cell. 2000 Mar;12(3):310-2; author reply 313-5. doi: 10.1105/tpc.12.3.310.
7
How can two-gene models of self-incompatibility generate new specificities?
Plant Cell. 2000 Mar;12(3):309-10; author reply 313-5. doi: 10.1105/tpc.12.3.309.
8
The S receptor kinase determines self-incompatibility in Brassica stigma.
Nature. 2000 Feb 24;403(6772):913-6. doi: 10.1038/35002628.
9
The pollen determinant of self-incompatibility in Brassica campestris.
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1920-5. doi: 10.1073/pnas.040556397.
10
The male determinant of self-incompatibility in Brassica.
Science. 1999 Nov 26;286(5445):1697-700. doi: 10.1126/science.286.5445.1697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验