CNRS, Univ. Lille, UMR 8198-Evo-Eco-Paléo, F-59000, Lille, France.
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
Elife. 2019 Nov 25;8:e50253. doi: 10.7554/eLife.50253.
How two-component genetic systems accumulate evolutionary novelty and diversify in the course of evolution is a fundamental problem in evolutionary systems biology. In the Brassicaceae, self-incompatibility (SI) is a spectacular example of a diversified allelic series in which numerous highly diverged receptor-ligand combinations are segregating in natural populations. However, the evolutionary mechanisms by which new SI specificities arise have remained elusive. Using in planta ancestral protein reconstruction, we demonstrate that two allelic variants segregating as distinct receptor-ligand combinations diverged through an asymmetrical process whereby one variant has retained the same recognition specificity as their (now extinct) putative ancestor, while the other has functionally diverged and now represents a novel specificity no longer recognized by the ancestor. Examination of the structural determinants of the shift in binding specificity suggests that qualitative rather than quantitative changes of the interaction are an important source of evolutionary novelty in this highly diversified receptor-ligand system.
在进化过程中,双组分遗传系统如何积累进化新颖性并多样化是进化系统生物学的一个基本问题。在十字花科中,自交不亲和(SI)是一个多样化等位基因系列的壮观例子,其中许多高度分化的受体-配体组合在自然种群中分离。然而,新的 SI 特异性产生的进化机制仍然难以捉摸。通过植物体内祖先蛋白重建,我们证明了两个等位变体作为不同的受体-配体组合分离,通过一个不对称的过程发生了分化,其中一个变体保留了与它们(现已灭绝的)假定祖先相同的识别特异性,而另一个变体在功能上已经分化,现在代表了一种不再被祖先识别的新特异性。对结合特异性变化的结构决定因素的研究表明,在这个高度多样化的受体-配体系统中,相互作用的定性变化而不是定量变化是进化新颖性的重要来源。